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ABSTRACT

Anatomical structure segmentation is the basis for further im-
age analysis processes. Although there are many available
segmentation methods there is still the need to improve the
accuracy and speed of them to be used in a clinical envi-
ronment. The VISCERAL project organizes a benchmark to
compare approaches for organ segmentation in big data. A
fully–automatic segmentation method using the VISCERAL
data set is proposed in this paper. It incorporates both the local
contrast of the image using an intensity feature as well as at-
las probabilistic information to compute the definite labelling
of the structure of interest. The usefulness of the new inten-
sity feature is evaluated using contrast–enhanced CT images
of the trunk. An overall average increase is computed in the
overlap of the segmentations with an improvement of up to
33% for several anatomical structures when compared to only
using an atlas based segmentation method. Qualitative results
are also shown for MR images supporting the inclusion of
this contrast feature in atlas–based segmentation methods for
several modalities.

Index Terms— Multi–organ segmentation, atlas–based
segmentation.

1. INTRODUCTION

There are many clinical situations that benefit from organ seg-
mentation as the basis for further image analysis [1, 2]. In
addition, the increasingly available imaging data will require
automatic image processing to reduce the radiologists’ work-
load. A more efficient image interpretation [3], and segmenta-
tion can help to facilitate navigation in image sets. The Visual
Concept Extraction Challenge in Radiology (VISCERAL) [4]
Benchmark1 focuses on whole body labelling in 3D medical
imaging data. The goal is to compare approaches for multiple
anatomical structure segmentation in various imaging modal-
ities. All data are stored in a cloud infrastructure to share
large amounts of imaging data between the participants and
evaluate their algorithms on a common training and testing
dataset.

1VISCERAL benchmark: http://www.visceral.eu, 2012. [On-
line; accessed 20-March-2014].

Some of the current approaches to multi–structure seg-
mentation like regression forests [5] are fully probabilistic
and have been incorporated into medical image analysis, re-
cently. Atlas based segmentation is also an approach that
has a straightforward implementation and has shown robust-
ness in the segmentation of different anatomical structures [6,
7]. However, some of these segmentation methods have not
been implemented successfully in more than a single imag-
ing modality besides computed tomography (CT). Another
remaining challenge is that their segmentation accuracies and
implementation speed still need to be improved for real clini-
cal usage.

A new method for multi–organ segmentation is proposed
in this paper to include both local and global information in
the label estimation. The method is presented in the Mate-
rial and Methods section. An evaluation of the method using
contrast–enhanced CT scans of the trunk is presented in the
experimental setup and results sections. An analysis of the
results showing the advantages of using this method as well
as suggestions for further improvement are discussed in the
Discussion and Conclusion.

2. MATERIAL AND METHODS

The method proposed in this paper consists of three steps: Im-
age pre–processing for intensity based structure estimation,
atlas registration and label refinement. A description of each
step is explained in the following section.

2.1. Image pre–processing

The images are pre–processed using a normalization step that
preserves the intensity contrast between structures but signif-
icantly reduces the search space for selecting meaningful in-
tensity thresholds within the images. The image A is normal-
ized using Equation 1:

Anorm =
k

A
− 1 , (1)

where k is the difference between maximum and minimum
intensity. After applying this pre–processing step to the im-
ages, the more relevant intensity ranges for the structures of
interest are found in the histogram regions closer to zero. The



Fig. 1: Image pre–processing. Image A is the original image. Image B is the output from the pre–processing proposed in
the Methods section. C is a windowed view of the pre–processed image histogram in the first 100 intensities. The rest of the
histogram repeats the isolated peaks pattern shown in the far left region of C. Binary mask D is obtained when the image is
thresholded in the blue rectangle area overlaid on C. This automatically computed binary mask is used as a first estimation for
the location of the liver and spleen. It is then combined with the output labels obtained from the atlas registrations to have a
better segmentation of the structures of interest.

normalization is useful because it maximizes the contrast be-
tween intensities that are equivalent in the original and inverse
versions of the image. The histogram of the output image is
easier to analyse with more peaks and nadirs in the intensities
closely related to the structures of interest. A visual analysis
of the histograms shows similar regions of interest in differ-
ent images and different modalities that can be used as preset
parameters for threshold selection. A large range of the inten-
sities in the histogram can be automatically discarded because
it is composed of isolated peaks at different intensity levels in
the regions more distant to zero intensity. This is due to the
effect of the preprocessing step proposed in this paper (See
Fig. 1).

2.2. Atlas registration

An atlas in the context of this paper includes both a medi-
cal image and a binary label image with the manually anno-
tated structure of interest. The target or query image is used
as fixed image and registered to the moving atlas. The co-
ordinate transformation obtained is applied to the label im-
age to have an estimation for the location of the atlas labelled
structure in the target image. The images are registered using
the implementation of the elastix software [8]. An adaptive
stochastic gradient descent optimizer is computed in a multi–
resolution approach. For the purpose of measuring solely the
impact of the pre–processing step proposed in this paper, a
single global affine registration is performed in the experi-
ments. The segmentation output could be improved adding a
non–rigid registration step, but this is out of the scope of this
paper.

2.3. Label refinement

For each of the organs to be segmented, a binary mask is ob-
tained selecting an intensity threshold using the intensity his-
togram from the pre–processed image. For this work, a visual
inspection of the histogram in three CT scans was necessary
to select the thresholds for the four organs evaluated. The
thresholds were then applied to all the scans without further
inspection to create the binary masks that incorporate this in-
tensity feature (Sint). With the atlas registration label output
(Satlas), a new binary mask annotation of the structure is cre-
ated with the intersection of the two masks mentioned:

Sint ∩ Satlas

This mask incorporates both data driven information from the
target image and a probabilistic estimation from the atlas reg-
istration output.

2.4. Experimental setup

Ten contrast–enhanced CT (ceCT) scans of the trunk were
used to test the method. The images were acquired primar-
ily in patients with malignant lymphoma. All volumes have a
field of view from the corpus mandibulae to the pelvis and are
enhanced by a iodine–containing contrast agent that improves
tissue contrasts for detecting pathological lymph nodes. Im-
age resolution is 0.793 × 0.793 × 3 mm. Four organs were
manually segmented from each scan by a radiologist. The
right and left lungs, liver and spleen manual annotations were
used as ground truth to evaluate the proposed method. A
leave–one–out cross validation approach using 9 ceCT im-
ages as atlases and the remaining scan as target image was
used. To measure the overlap between the output labels from
the proposed method and the ground truth, the Jaccard coef-
ficient is calculated. This measure is a spatial overlap metric



where a coefficient of 1 means a perfect overlap and 0 means
no overlap.

For the liver and spleen the same intensity region of in-
terest is used to create the binary mask (Sint). This region
includes the intensities from the highest peak in the normal-
ized image histogram to the first empty intensity space in the
histogram after this peak. For the lungs all values in the neg-
ative intensities are selected as positives for the mask.

Morphological dilation with a small sized 3D kernel is
used to maximize the mask space location obtained from the
thresholded pre–processed image. Both the training and test
images are then evaluated for the overlap of the structures.
The output labels of the atlas–based registration are compared
with the output labels obtained with the method described
that also incorporates the intensity features obtained from the
thresholded pre–processed image.

3. RESULTS

The results expressed in both Fig. 3 and Fig. 4 are the out-
put after a single global affine registration of the scans for the
atlases labels and our proposed method. Our method showed
an increase in the mean Jaccard coefficient for all of the tested
structures (liver, spleen and lungs). The most significant im-
provement is seen in the spleen with a 34.9% increase, fol-
lowed by the lungs with a 25.9% and 29.7% increase respec-
tively, and finally a 15.4% higher mean Jaccard in the liver
Fig.3. The best overlap score for the complete set of atlases
is also increased in all of the tested structures as can be seen
in Fig. 4.

Fig. 3: Mean average Jaccard coefficients. Segmentation re-
sults after a global affine registration (light gray bars in Fig. 3)
vs. segmentation adding the proposed intensity features in the
method (dark gray bars in Fig. 3) for liver, spleen, right lung
(RLung) and left lung (LLung). There is an overall increase
in the overlap after including the label estimation step to the
affine registration output for all the tested organs.

4. DISCUSSIONS AND CONCLUSIONS

This method introduces a new image intensity feature that is
based on the inherent image contrast of medical structures
in different modalities. It reduces the search space consider-
ably to define similar intensities that represent the anatomical
structures in the images. The method showed an improvement
in the overlap of the segmentations when compared to just
using the output labels from atlas registration. Although, the
results are evaluated after a single affine registration, better
results could be obtained with a following non–rigid registra-
tion and more complex label fusion methods in a multi–atlas

Fig. 2: Qualitative results in magnetic resonance imaging (MRI). The intensity–based label evaluated for contrast–enhanced
CT in this paper is applied in the head (i.e. A, A’) and the whole body (i.e. B, B’) T1 MR scans. For the head scan A a threshold
of intensity value 3 is shown in blue and intensity value 5 in red in A’. The blue label strongly correlates with white matter
segmentation and the red label gives a good estimation of the grey matter. For the whole body scan B two regions were selected
in the first 100 values of the output histogram in a similar approach to what is proposed in the paper for contrast–enhanced CT.
The red label in B’ obtains an initial segmentation of structures such as liver, kidneys and the spleen that can be coupled with
the atlas registration labels of each structure for a more accurate location in the image. The blue label is associated with the
lungs. Although the intensity range in MR scans can vary, the intensity regions of interest remain constant for the selection of
intensity thresholds using the pre–processing step of the method



based segmentation method, which is known to produce bet-
ter results than single atlas segmentation [7].

Fig. 4: Highest average results for individual atlases. All the
tested structures had a higher overlap score with the organ
intensity based estimation from the method (dark gray bars in
Fig. 4) vs. using only the registered atlas output label (light
gray bars in Fig. 4).

The binary intensity masks from the pre–processed im-
ages do incorporate voxels from other structures in the image.
However, the intersection with the atlas registration labels is
able to primarily select those contained within the structure of
interest. The overall overlap was equal or higher for the four
structures evaluated supporting the robustness of the method
particularly for the structures with a high contrast in the im-
age. The cases where the intensity feature did not improve
the overlap when combined to an atlas label had similar re-
sults to only using the atlas label. This feature of the method
is a strong predictor that even in the worst cases means that
the method will not significantly affect the original segmenta-
tion.

Qualitative results for MR images in Fig. 2 show promis-
ing results to evaluate the method in different imaging modal-
ities. It is useful particularly for MR scans where noise re-
moval is critical for an accurate segmentation. In conclusion,
a new, simple and fast method using both local contrast infor-
mation and atlas–based segmentation is proposed. The pro-
posed image pre–treatment significantly reduces the search
space for the intensities of the desired structures. It also de-
creases the amount of noise involved in the selection of in-
tensity parameters from the structure. It improves the overall
Jaccard coefficient for the majority of the atlases and can be
used as a reference for guiding following registrations.

A more in–depth evaluation of the automatically selected
threshold parameters is currently being evaluated and is ex-
pected to improve the threshold selection for the different
structures and imaging modalities. A bigger testing dataset is
foreseen with full implementation of the method using multi–
atlas based segmentation. Such a data set will include scans
from multiple modalities like CT and MR. This evaluation
will also lead to a more extensive comparison of the proposed
approach with other state–of–the–art methods.
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