• ANSICHT
    • Meine Themen
    • Alle Themen
    • Alle Publikationen
    • Alle Autoren
    • Alle Schlagworte
    • Nicht zugeordnet
    • Aktuell
    • Suchen
  • EXPORT
    • Alle Publikationen exportieren
  • SORTIERE NACH
    • Autor
    • Titel
    • Typ/Zeitschrift
    • Jahr
    • Erstelldatum
  • SYSTEM
    • Hilfe
    • Über diese Seite
  • GASTNUTZER
  • anonymous
  • Themen abonnieren
  • ANMELDUNG
  • Name:
    Passwort:



Deutsch, English, Nederlands, Norsk, Português, <mehr...>
interpretability

Related keywords:


  • concept vectors
  • Deep convolutional neural network
  • Deep Learning
  • EEG
  • explainability
  • explainable AI (XAI)
  • explainable artificial intelligence
  • Histopathology
  • machine learning
  • Multi-Agent Systems
  • selective attention
  • understandability
  • wrong labels
  • XAI
  • XMAS

Publikationen für Schlagwort "interpretability"
2021
Mara Graziani, Iam Palatnik de Sousa, Marley M Vellasco BR, Eduardo Costa da Silva, Henning Müller und Vincent Andrearczyk, Sharpening Local Interpretable Model-agnostic Explanations for Histopathology: Improved Understandability and Reliability, in: MICCAI 2021, Springer, 2021
attachment
Lora Fanda, Yashin Dicente Cid, Paweł J Matusz und Davide Calvaresi, To Pay or Not to Pay Attention: Classifying and Interpreting Visual Selective Attention Frequency Features, 2021
attachment
2020
giovanni ciatto, Andrea Omicini, Michael Schumacher und Davide Calvaresi, Agent-Based Explanations in AI: Towards an Abstract Framework, in: Post-Proceedings o EXTRAAMAS 2020, Springer, 2020
attachment
2019
Mara Graziani, Henning Müller und Vincent Andrearczyk, Interpreting intentionally flawed models with linear probes, in: ICCV workshop on statistical deep learning in computer vision, Seoul, Korea, 2019
attachment
2018
Mara Graziani, Vincent Andrearczyk und Henning Müller, Regression Concept Vectors for Bidirectional Explanations in Histopathology (2018), in: Lecture Notes in Computer Science, Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2018(8)
  • []: Best paper award

attachment
Ausführdauer: 0.2844 Sekunden.