[BibTeX] [RIS]
Integration of local and global features explanation with global rules extraction and generation tools
Type of publication: Article
Citation:
Journal: Post-proceedings of EXTRAAMAS 2022
Year: 2022
Month: June
Abstract: Widely used in a growing number of domains, Deep Learning predictors are achieving remarkable results. However, the lack of trans- parency (i.e., opacity) of their inner mechanisms has raised trust and employability concerns. Nevertheless, several approaches fostering mod- els of interpretability and explainability have been developed in the last decade. This paper combines approaches for local feature explanation (i.e., Contextual Importance and Utility – CIU) and global feature ex- planation (i.e., Explainable Layers) with a rule extraction system, namely ECLAIRE. The proposed pipeline has been tested in four scenarios em- ploying a breast cancer diagnosis dataset. The results show improvements such as the production of more human-interpretable rules and adherence of the produced rules with the original model.
Keywords: Local explainability · Global explainability · Feature rank- ing · rule extraction
Authors Contreras, Victor H.
Schumacher, Michael
Calvaresi, Davide
Added by: []
Total mark: 0
Attachments
  • Extraamas_workshop_Davide_Vict...
Notes
    Topics