[BibTeX] [RIS]
Towards AI-Native Vehicular Communications
Tipo de publicação: Inproceedings
Citação: IEEE VTC Spring 2023
Publication status: Published
Booktitle: IEEE VTC Spring 2023
Ano: 2023
Mês: June
Publisher: IEEE
Location: Florence, Italy
Organização: IEEE
URL: https://ieeexplore.ieee.org/ab...
DOI: 10.1109/VTC2023-Spring57618.2023.10199974
Resumo: The role of fast yet reliable wireless communications in various application domains is getting ever more important. At the same time, as use cases are becoming more and more complex, application requirements are getting ever more stringent. One example is intelligent transportation, where the efficiency and reliability of wireless data delivery is essential for effective service support. As a consequence, in this context the adoption of AI techniques is widely considered crucial for enabling vehicular communications to adapt to dynamic changes of the environment. In this position paper, we discuss some representative applications of advanced AI tools in vehicular communications. In particular, we elaborate on the potential of distributed learning based on federated learning, of proactive service provisioning, and of graph neural network for enabling AI-native vehicular communications
Palavras-chave: 6G, Distributed AI, vehicular communications
Autores Rizzo, Gianluca
Adicionado por: []
Total mark: 0
Anexos
  • VTC_spring_2023.pdf
Notas
    Tópicos