[BibTeX] [RIS]
A data augmentation methodology for machine learning modelling of distribution power grid: Application on optimal storage sizing and control
Publicatietype: Artikel
Citatie:
Tijdschrift: CIRED 2021
Jaar: 2021
Maand: September
Pagina's: 5
URL: https://www.cired2021.org/...
Samenvatting: The growth of distributed energy generations and electric vehicle charging stations in the low voltage grid brings out new challenges for distribution system operators. Actual methods of distribution network modelling are computationally expensive and omit aging of network physical components. This paper proposes a method of data augmentation for data-driven modelling. The methodology is divided into four parts: data generation, data-driven modelling, power flow boundaries estimation, and finally the application on optimal energy storage sizing and control.
Trefwoorden: machine learning, modeling, optimization, Simulation, VOLTAGE PREDICTION
Auteurs Weibel, Amine
jordan, Nicolas
Wannier, David
Toegevoegd door: []
Totaalscore: 0
Bestanden
  • CIRED Paper 459.pdf
Aantekeningen
    Onderwerpen