[BibTeX] [RIS]
Medical case-based retrieval: integrating query MeSH terms for query-adaptive multi-modal fusion
Publicatietype: In proceedings
Citatie: GFM2015
Boektitel: SPIE Medical Imaging
Jaar: 2015
Samenvatting: Advances in medical knowledge give clinicians more objective information for a diagnosis. Therefore, there is an increasing need for bibliographic search engines that can provide services helping to facilitate faster information search. The ImageCLEFmed benchmark proposes a medical case{based retrieval task. This task aims at retrieving articles from the biomedical literature that are relevant for diff erential diagnosis of query cases including a textual description and several images. In the context of this campaign many approaches have been investigated showing that the fusion of visual and text information can improve the precision of the retrieval. However, fusion does not always lead to better results. In this paper, a new query-adaptive fusion criterion to decide when to use multi-modal (text and visual) or only text approaches is presented. The proposed method integrates text information contained in MeSH (Medical Subject Headings) terms extracted and visual features of the images to fi nd synonym relations between them. Given a text query, the query-adaptive fusion criterion decides when it is suitable to also use visual information for the retrieval. Results show that this approach can decide if a text or multi-modal approach should be used with 77.15% of accuracy.
Trefwoorden: ImageCLEF, ImageCLEF benchmark, MeSH, Multimodal information retrieval and information fusion, query-adaptive fusion
Auteurs García Seco de Herrera, Alba
Foncubierta-Rodríguez, Antonio
Müller, Henning
Toegevoegd door: []
Totaalscore: 0
Bestanden
  • SPIE2015_fulltext_Alba.pdf
Aantekeningen
    Onderwerpen