[BibTeX] [RIS]
Multimodal Context Modeling and Classification
Publicatietype: In proceedings
Citatie:
Boektitel: Electro/Information Technology (EIT)
Jaar: 2014
Maand: Juni
Pagina's: 341 - 346
Uitgever: IEEE
Locatie: Milwaukee, WI
Organisatie: Electro/Information Technology (EIT), 2014 IEEE International Conference, 5-7.06.2014
DOI: 10.1109/EIT.2014.6871788
Samenvatting: This paper presents a novel supervised method for context modeling and classification based on Transferable Belief Model (TBM). The task of context classification is to identify, among predefined context types, the one that is currently active in the video-surveillance footage of multipurpose halls. Context is spatially modeled by extracting five discriminative semantic features according to depth zones. These zones are provided by depth-based scene segmentation method. Using mathematical TBM tools, the structured semantic features are processed and the mass functions are modeled on three levels in order to propose classification. In addition to video document indexing and retrieval, this work can improve the machine vision capability in behavior analysis.
Trefwoorden: context modeling, Pattern Recognition, Transferable Belief Model, Video-surveillance
Auteurs Charara, Nour
Maria, Sokhn
Jarkass, Iman
Abou Khaled, Omar
Mugellini, Elena
Toegevoegd door: []
Totaalscore: 0
Bestanden
    Aantekeningen
      Onderwerpen