Dear guest, welcome to this publication database. As an anonymous user, you will probably not have edit rights. Also, the collapse status of the topic tree will not be persistent. If you like to have these and other options enabled, you might ask Admin (Ivan Eggel) for a login account.
 [BibTeX] [RIS]
SRDCNN: Strongly Regularized Deep Convolution Neural Network Architecture for Time-series Sensor Signal Classification Tasks
Type of publication: Proceedings
Citation:
Booktitle: 28th ACM International Conference on Information and Knowledge Management (CIKM)
Year: 2019
Month: September
Pages: 6
Organization: ACM
URL: http://www.cikm2019.net/...
Abstract: Deep Neural Networks (DNN) have been successfully used to perform classification and regression tasks, particularly in computer vision based applications. Recently, owing to the widespread deployment of Internet of Things (IoT), we identify that the classification tasks for time series data, specifically from different sensors are of utmost importance. In this paper, we present SRDCNN: Strongly Regularized Deep Convolution Neural Network (DCNN) based deep architecture to perform time series classification tasks. The novelty of the proposed approach is that the network weights are regularized by both ?1 and ?2 norm penalties. Both of the regularization approaches jointly address the practical issues of smaller number of training instances, requirement of quicker training process, avoiding overfitting problem by incorporating sparsification of weight vectors as well as through controlling of weight values. We compare the proposed method (SRDCNN) with relevant state-of-the-art algorithms including different DNNs using publicly available time series classification benchmark (the UCR/UEA archive) time series datasets and demonstrate that the proposed method provides superior performance. We feel that SRDCNN warrants better generalization capability to the deep architecture by profoundly controlling the network parameters to combat the training instance insufficiency problem of real-life time series sensor signals.
Keywords: Applied computing~Health informatics, Human-centered computing systems and tools, Theory of computation~Semi-supervised learning
Authors Ukil, Ariji
Jara, Antonio J
Marin, Leandro
Added by: []
Total mark: 0
Attachments
  • AU_paper_2019_long_30_Aug.pdf
Notes
    Topics