[BibTeX] [RIS]
Solver Tuning and Model Configuration
Type of publication: Inproceedings
Citation:
Booktitle: Proceedings of the 41st German Conference on Artificial Intelligence (KI 2018)
Series: Lecture Notes in Artificial Intelligence
Volume: 1117
Year: 2018
Pages: 141 -- 154
Publisher: Springer, Cham
Location: Berlin
ISBN: 978-3-030-00110-0
URL: https://link.springer.com/chap...
DOI: https://doi.org/10.1007/978-3-030-00111-7_13
Abstract: This paper addresses the problem of tuning parameters of mathematical solvers to increase their performance. We investigate how solvers can be tuned for models that undergo two types of configuration: variable configuration and constraint configuration. For each type, we investigate search algorithms for data generation that emphasizes exploration or exploitation. We show the difficulties for solver tuning in constraint configuration and how data generation methods affects a training sets learning potential.
Keywords: Evolutionary algorithm, machine learning, Mathematical solvers, Novelty search, Tuning mathematical solvers
Authors Barry, Michael
Abgottspon, Hubert
Schumann, René
Editors Trollman, Frank
Turhan, Anni-Yasmin
Added by: []
Total mark: 0
Attachments
    Notes
      Topics