Dear guest, welcome to this publication database. As an anonymous user, you will probably not have edit rights. Also, the collapse status of the topic tree will not be persistent. If you like to have these and other options enabled, you might ask Admin (Ivan Eggel) for a login account.
 [BibTeX] [RIS]
Sounds Enhance Visual Completion Processes
Type of publication: Article
Citation:
Journal: Neuroimage
Volume: 179
Year: 2018
Pages: 480-488
URL: https://www.sciencedirect.com/...
DOI: 10.1016/j.neuroimage.2018.06.070
Abstract: Everyday vision includes the detection of stimuli, figure-ground segregation, as well as object localization and recognition. Such processes must often surmount impoverished or noisy conditions; borders are perceived despite occlusion or absent contrast gradients. These illusory contours (ICs) are an example of so-called mid-level vision, with an event-related potential (ERP) correlate at ∼100–150 ms post-stimulus onset and originating within lateral-occipital cortices (the ICeffect). Presently, visual completion processes supporting IC perception are considered exclusively visual; any influence from other sensory modalities is currently unknown. It is now well-established that multisensory processes can influence both low-level vision (e.g. detection) as well as higher-level object recognition. By contrast, it is unknown if mid-level vision exhibits multisensory benefits and, if so, through what mechanisms. We hypothesized that sounds would impact the ICeffect. We recorded 128-channel ERPs from 17 healthy, sighted participants who viewed ICs or no-contour (NC) counterparts either in the presence or absence of task-irrelevant sounds. The ICeffect was enhanced by sounds and resulted in the recruitment of a distinct configuration of active brain areas over the 70–170 ms post-stimulus period. IC-related source-level activity within the lateral occipital cortex (LOC), inferior parietal lobe (IPL), as well as primary visual cortex (V1) were enhanced by sounds. Moreover, the activity in these regions was correlated when sounds were present, but not when absent. Results from a control experiment, which employed amodal variants of the stimuli, suggested that sounds impact the perceived brightness of the IC rather than shape formation per se. We provide the first demonstration that multisensory processes augment mid-level vision and everyday visual completion processes, and that one of the mechanisms is brightness enhancement. These results have important implications for the design of treatments and/or visual aids for low-vision patients.
Keywords: audiovisual, cognitive neuroscience, EEG, EEG/ERP, electrical neuroimaging, multisensory, object completion, visual perception
Authors Tivadar, Ruxandra
Retsa, Chrysa
Turoman, Nora
Matusz, Paweł J
Murray, Micah M
Added by: []
Total mark: 0
Attachments
  • Tivadar-revised-manuscript-ACC...
Notes
    Topics