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Abstract— In this paper we present a novel technique for
characterizing and classifying 3D textured volumes belonging
to different lung tissue types in 3D CT images. We build a
volume-based 3D descriptor, robust to changes of size, rigid
spatial transformations and texture variability, thanks to the
integration of Riesz-wavelet features within a Covariance-
based descriptor formulation. 3D Riesz features characterize
the morphology of tissue density due to their response to
changes in intensity in CT images. These features are encoded
in a Covariance-based descriptor formulation: this provides a
compact and flexible representation thanks to the use of feature
variations rather than dense features themselves and adds
robustness to spatial changes. Furthermore, the particular sym-
metric definite positive matrix form of these descriptors causes
them to lay in a Riemannian manifold. Thus, descriptors can
be compared with analytical measures, and accurate techniques
from machine learning and clustering can be adapted to their
spatial domain. Additionally we present a classification model
following a “Bag of Covariance Descriptors” paradigm in order
to distinguish three different nodule tissue types in CT: solid,
ground-glass opacity, and healthy lung. The method is evaluated
on top of an acquired dataset of 95 patients with manually
delineated ground truth by radiation oncology specialists in 3D,
and quantitative sensitivity and specificity values are presented.

I. INTRODUCTION

Clinical research has identified morphological tissue prop-
erties as indicators of cancer aggressiveness [1]. Texture
and size of the solid and ground-glass opacity (GGO)
components of a nodule, as observed from CT images, can
provide reliable cues in order to assess medical examination
criteria [2], but region texture delineation and classification
is still an open and time-demanding problem. According to
the clinical knowledge about the typology of ground-glass
opacity (GGO) and solid tissue, it is established that the
compactness, size, density and homogeneity of a nodule is
differentiated from healthy lung regions, despite the large
variability of normal lung tissue. We believe that the dis-
criminative capabilities of these visual cues can be tackled
from a pattern recognition approach, which motivates and
settles the basis of the work presented in this paper.

1 Department of Information and Communication Technologies, Univer-
sitat Pompeu Fabra, Barcelona, Spain,

2 Institute of Information Systems, University of Applied Sciences
Western Switzerland Sierre (HES-SO),

3 Department of Radiology and Medicine (Biomedical Informatics),
Stanford University, Stanford, CA, USA,

4 Department of Radiation Oncology and Stanford Cancer Institute,
Stanford University School of Medicine, Stanford, CA, USA

This work was supported by the Swiss National Science Foundation
(Grant PZ00P2 154891) and the Spanish Government Ministry of Economy
and Competitivity (Grants TIN2012-39203 and IPT-2012-0630-020000)

In computer vision research, several descriptors for 3D
object classification have appeared ( [3]–[6]). Nevertheless,
these descriptors are usually targeted to 3D surfaces instead
of 3D dense volumes as is the case in CT images. In the med-
ical imaging domain, the survey conducted in [7] points out
relevant techniques in applied 3D solid texture analysis and
highlights the importance of multi-scale directional convolu-
tional approaches that are non-separable to characterize sub-
tle and discriminative properties of 3D biomedical textures.
In this area, Riesz-wavelet features have demonstrated great
representative capabilities: they characterize the morphology
of tissue density thanks to their response to changes in CT
intensities. These features are expressed by the response
magnitudes to a set of 3D multiscale filters applied to the CT
volume. We use this theoretically solid texture definition and
propose its integration into a covariance-based descriptor,
with the goal of establishing a paradigm for 3D region
definition and classification. The main benefits of Covariance
descriptors include the robustness to spatial transformations
such as rotations, as well as the tolerance to changes in shape,
size and resolution in the 3D domain. This is due to the
fact that feature variation observations inside a region are
used, instead of absolute feature values, and any structural
information about feature location is discarded. Furthermore,
as Covariance descriptors are embodied by covariance ma-
trices, they lie in a meaningful and geometrically coherent
descriptor space: similarly textured regions appear clustered
in a low dimensional and analytically operable space. We
then propose a part-based model which is able to represent
the entire possible space of lung tissue types in this particular
manifold, and model the underlying three classes of interest
(GGO, solid and healthy tissue).

Our final goal is to provide a classification mechanism in
order to assist clinical diagnosis and to aim towards unsu-
pervised lung nodule segmentation. In this paper we provide
the basis of the so-called Riesz-covariance descriptor and the
“Bag-of-covariances” classification method, and present our
results in the form of accuracy performance estimated on a
dataset containing 100 patients with 3D regions delineated
by experienced radiologists.

II. METHODOLOGY
A. Patients and dataset

100 patients from Stanford Hospital and Clinics with
biopsy–proven early stage non-small cell lung carcinoma
were used to estimate the performance of our approach. The
nodule region present in each patient lungs was delineated
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Fig. 1. Second–order Riesz kernels R(n1,n2,n3) convolved with isotropic Gaussian kernels G(x). Responses to a linear combination of the filterbank
represented by these kernels are used as discriminative representations of the underlying 3D tissue texture.

in 3D by the treating radiation oncologist, then the GGO
and solid components were contoured separately using lung
and mediastinal windows. The MATLAB software was used
for post-processing of the available CT images and data,
including region ground-truth preparation and resampling of
volumes in order to have isotropic voxels of 0.8× 0.8× 0.8
mm3 using cubic spline interpolation. 5 patients of the
dataset were discarded due to annotation artifacts, therefore
the final dataset contains 95 patients.

B. 3D Riesz-wavelet features

3D Riesz filterbanks are used to characterize the texture of
the lung parenchyma in 3D CT. The N–th order Riesz trans-
form R(N) of a three–dimensional signal f(x) is defined in
the Fourier domain as:

̂R(n1,n2,n3)f(ω) =

√
n1 + n2 + n3
n1!n2!n3!

(−jω1)n1(−jω2)n2(−jω3)n3

||ω||n1+n2+n3
f̂(ω),

(1)

for all combinations of (n1, n2, n3) with n1 +n2 +n3 = N
and n1,2,3 ∈ N. Eq. (1) yields

(
N+2
2

)
templates R(n1,n2,n3).

The filterbanks are obtained by coupling the Riesz transform
with isotropic band–limited wavelets [8]: Fig. 1 depicts
the second–order Riesz filterbank when convolved with
anisotropic Gaussian kernels. Rotation–covariance is ob-
tained by locally aligning all Riesz components R(n1,n2,n3)

of all scales based on the locally prevailing orientation [9].
The steerability property of the filterbanks allows synthesiz-
ing the responses of the Riesz components at any orientation
from a linear combination of themselves, and does not
require additional convolutions with oriented components.
Locally prevailing orientations are estimated using a regular-
ized version of the structure tensor computed directly from
the Riesz components [10].

C. 3D spatial Covariance-based descriptors

As defined in Eq. (1), 2nd order 3D Riesz features yield
to a 6-dimensional response to a filterbank according to the
texture of the tissue volume. For a 3D CT image of size
W×H×S, we can obtain a new volume with the responses to
each one of the second–order Riesz kernels, of size 6×W ×
H × S. Nevertheless, for the task of tissue classification, a
more compact and accurate representation is desirable, where
feature characteristics can be encoded to a specific common
format regardless of the size of any given volumetric region.

Covariance matrices were first used as descriptors in
the computer vision domain by Tuzel et al. [11] for the
recognition of objects and faces in 2D color images, as
a way of relating visual cues such as edges, curvature or

color values inside a region of interest of arbitrary size.
This framework has been extended to other domains such
as unstructured point clouds [12], 3D color texture + surface
description [13], or to spatio-temporal gesture recognition in
3D depth image sequences [14], [15].

Due to their construction, covariance-based descriptors
are robust to noisy inputs and lose structural information
about the observed features. Therefore, they are suitable for
unstructured, abstract texture characterization inside a region,
regardless of spatial rigid transformations such as rotation,
scale or translations. This representation is based on the
statistical notion of covariance as a measure of how several
random variables change together – 3D Riesz responses in
our case. In order to define a given texture, it captures the
intrinsic correlations between the n-dimensional distribution
of these features, and uses this as a descriptive signature.

In order to formally define the 3D Riesz-Covariance
descriptors, we denote a feature selection function Φ(ct, v)
for a given 3D CT image ct and a selected subvolume region
v inside the boundaries of ct as:

Φ(ct, v) = {φx,y,z, ∀x, y, z ∈ v} , (2)

where φx,y,z is the vector of variables obtained at the set of
the coordinates {x, y, z} contained in the volume v, and is
defined as:

φx,y,z =
(
R(n1,n2,n3)

x,y,z , ‖R‖x,y,z, ctx,y,z
)
. (3)

These features include the 6 Riesz features at each one of
the coordinates in the set, as well as their norm and the CT
intensity values in Hounsfield Units. We have empirically
observed that this feature selection is capable of encoding
the texture and the tissue nature.

Then, for a given region v of the CT image, the associated
Covariance descriptor can be obtained as:

Cov (Φ(ct, v)) =
1

N − 1

N∑
i=1

(φx,y,z − µ) (φx,y,z − µ)
T
,

(4)
where µ is the vector mean of the set of vectors {φx,y,z}
within the volumetric neighbourhood made of N samples.

The resulting 8 × 8 matrix Cov is a symmetric matrix
where the diagonal entries will represent the variance of each
feature channel, and the non-diagonal elements represent
their pairwise covariance, as seen in Fig. 2.

D. Riemannian manifold topology

Riesz-Covariance descriptors do not only provide an inter-
esting representation of data for their compactness and flex-
ibility: being covariance matrices they lie in the Riemannian
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Fig. 2. Cues involved in the descriptor calculation for a given CT cubic region. The 8 first cubes depict the values within a 40× 40× 40 pixel volume,
with the CT intensities, 3D-Riesz wavelet responses (for one fixed scale) and Riesz norm features. The 8 × 8 matrix in the right subfigure depicts the
resulting Covariance descriptor, encoding the different correlations between the distributions of the observed cues.

manifold of symmetric definite positive matrices Sym+
d . This

spatial variety is geometrically meaningful as 3D regions
sharing similar texture characteristics remain under close
areas in the descriptor space. Nevertheless, descriptors have
to be treated carefully in order to analytically exploit their
non Euclidean spatial distribution via their projection into
the tangent space at a particular point of the manifold.

According to [16], the Riemannian metric can be approx-
imated in close neighborhoods of the Sym+

d manifold by
the Euclidean metric in its tangent space, TY , where the
symmetric matrix Y is a reference projection point in the
manifold. TY is formed by a vector space of d×d symmetric
matrices. The tangent mapping of a manifold element X to
x ∈ TY is made by the point-dependent logY operation:

x = logY (X) = Y
1
2 log

(
Y −

1
2XY −

1
2

)
Y

1
2 . (5)

The geodesic distance between two points X1 and X2 on
Sym+

d is defined as

δ(X1, X2) =

√
Trace

(
log
(
X
− 1

2
1 X2X

− 1
2

1

)2)
, (6)

or more simply δ(X1, X2) =
√∑d

i=1 log(λi)2, where λi are

the positive eigenvalues of X−
1
2

1 X2X
− 1

2
1 .

After observing the spatial distribution of the different lung
tissue classes, via multidimensional scaling of the space of
descriptors obtained for the GGO, solid and healthy lung
areas, we map all the data in a unique tangent space with
respect to a unique point in Sym+

d , as depicted in Fig. 3. In
order to simplify the computation, we choose this projection
point as the identity matrix Id, and the tangent mapping is
computed as a regular matrix logarithm as

x = logId(X) = log(X) = U log(D)U ′, (7)

with U and D being the elements of the single value
decomposition (SVD) of X ∈ Sym+

d .
The resulting symmetric matrices in the tangent space TId

contain only d(d + 1)/2 independent coefficients, in their
upper or lower triangular parts. Therefore it is possible to
apply the vectorization operation in order to obtain a linear
orthonormal space for the independent coefficients:

x̂ = vect(x) = (x1,1, x1,2, ..., x1,d, x2,2, x2,3, ..., xd,d), (8)

where x is the mapping of X ∈ Sym+
d to the tangent space,

resulting from Eq. (7). The obtained vector x̂ will lie in the
Euclidean space Rm, where m = d(d+ 1)/2.

E. Texture classification via Bag-of-Covariances

The “Bag of features” paradigm is an established clas-
sification technique in the machine learning domain [17].
It is conceived as an implicit part-based modeling from a
learning set of instances, where collections of different parts
of objects can be gathered in order to cover the intra-class
variability. Later on, this set of part representations, often
referred to as dictionary, is used to encode a learning set
of instances in terms of frequency histograms of the part
repetitions found on these instances. The same representation
is done for classification samples and the final decision
criteria are made in terms of histogram similarities. This
directly suits our classification problem: due to the small
number of samples and low resolution of features, we can
model a vast dictionary of all the possibilities in tissue
types – inner texture and margin of solid and GGO nodule
components, vessels, air, blood or even fiducial markers in
the healthy lung tissue.

We define our so-called “Bag of Covariances” in three
stages: dictionary learning, modeling of tissue classes by
word frequencies, and classification of test regions. In order
to build the so-called dictionary, we denote by P = {CT c

1:p}
as the set of CT images for all patients p, and their delineated
regions for each class c (solid, GGO and healthy lung). From
this data, we can obtain the set of vectorized 3D Riesz-
Covariance descriptors as defined in the previous section:
x̂ c

v,p = vect(logId(CovCV,P )), for a set of learning patients
p and classes c. v denotes the set of 3D subvolumes inside
the region class for which the descriptors are computed,
and it is obtained randomly inside the manually annotated
class regions. See Fig. 4 for a clarification of this learning.
All these elements, so-called words, can be stored as a
matrix, and data clustering algorithms such as K-means can
be applied in order to reduce dimensionality of those over-
represented samples.

logId

TId

Fig. 3. Mapping of points in Sym+
d manifold to the tangent space TId .

7911



Fig. 4. Representation of the descriptors at a patient level: cube colors
denote the 3D patches used for the construction of the dictionary according
to the three tissue classes.

In order to model the different classes, a new set of 3D
Riesz-Covariance descriptors for different parts of all three
classes is again obtained, from a second set of learning
patients. The descriptors are mapped to the nearest words
in the dictionary via their Euclidean distance, as the parts
are projected to the tangent space TId . This gives a set of
histogram representations in which each one of the tissue
instances for all the patients are defined as the frequency of
part appearances present in the dictionary.

For the classification of a new sample, a new set of 3D
Riesz-Covariance descriptors ŷ v = vect(logId(Covct,v)) is
obtained, where v indicates different patches inside the CT
image. Again, the descriptors can be quantized in terms of
dictionary frequencies, and the final classification criteria are
made according to the closest histogram representation in the
available model:

class(ct) = argmin
i

D(hct, hi), (9)

where hct denotes the histogram representation of the CT
test sample, hi denotes the learned model of dictionary
frequency representations, and D is the χ2 distance used
for the comparison of histograms.

III. EXPERIMENTAL EVALUATION
In order to estimate the classification accuracy achieved

by the proposed method, we performed cross-validation over
the presented dataset, keeping 35 patients for learning the
model and the remaining 60 patients for testing, for 10
iterations. The “Bag-of-covariances” method was trained by
modelling 60 parts for each class, for each patient, therefore
creating a dictionary size of 6300 words at each iteration. The
classification performance accuracy for the three modelled
classes is reported in terms of sensitivity (TP/TP+FN) and
specificity (TN/TN+FP ), with average values of 82.2% (σ =
2.55%) and 86.2% (σ = 5.85%) respectively, according to the
available ground-truth annotations defined in Section II.a.

Recent methods as [18], [19] reported similar accuracy,
which settles our presented approach amongst state of the
art performance levels. Even if these methods are focused
on interstitial lung diseases rather than nodule separation,
their definition of GGO and solid areas is consistent with our
approach so comparing against their outcomes is coherent.

IV. DISCUSSION AND CONCLUSIONS
We proposed an integrated approach for the character-

ization and classification of different lung tissue types in

3D, particularly focused to the separation of GGO and solid
nodule areas. Despite the high intra-class variability, our
method obtained reliable classification results, thanks to a
theoretically solid descriptor for encoding feature variations.

The contribution of this work sets the basis for further
CT image classification, not only in terms of different tissue
classes but also at an intra-class level in order to model
temporal stages of a nodule or to learn specific models for
characterizing the response to treatment of specific diseases.
These techniques may be clinically useful for identifying and
characterizing suspicious tissue regions in lesions.
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