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Abstract 11 

Hand amputation can dramatically affect the capabilities of a person. Cortical reorganization occurs 12 
in the brain, but the motor and somatosensorial cortex can interact with the remnant muscles of the 13 
missing hand even many years after the amputation, leading to the possibility to restore the 14 
capabilities of hand amputees through myoelectric prostheses. Myoelectric hand prostheses with 15 
many degrees of freedom are commercially available and recent advances in rehabilitation robotics 16 
suggest that their natural control can be performed in real life. The first commercial products 17 
exploiting pattern recognition to recognize the movements have recently been released, however the 18 
most common control systems are still usually unnatural and must be learned through long training. 19 
Dexterous and naturally controlled robotic prostheses can become reality in the everyday life of 20 
amputees but the path still requires many steps. This mini-review aims to improve the situation by 21 
giving an overview of the advancements in the commercial and scientific domains in order to outline 22 
the current and future chances in this field and to foster the integration between market and scientific 23 
research. 24 

 25 

1. Introduction 26 

It is estimated that 41'000 persons were living with a major loss of an upper limb in 2005 (Ziegler-27 
Graham et al., 2008). A hand amputation is one of the most impairing injuries and it can dramatically 28 
affect the capabilities of a person. Recent scientific and commercial advances in man-machine 29 
interfaces are promising and suggest that dexterous, naturally controlled, proportional and 30 
simultaneous robotic prostheses could be reality in the future of amputees. Nevertheless, the outline 31 
of the situation in the market and scientific field is complex and the path to naturally controlled 32 
prostheses still requires several steps. 33 

Man-machine interfaces have been developed to control hand prostheses via the brain (Lebedev and 34 
Nicolelis, 2006), peripheral nerves (Navarro et al., 2005) or the muscles (Cipriani et al., 2011). The 35 
first two methods are promising but they usually require invasive procedures to obtain robust 36 
performance, thus they are currently applied only in scientific research. The third method (surface 37 
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electromyography, sEMG) is probably the most widely used both in commercial settings and in 38 
scientific research. 39 

Myoelectric hand prostheses with many degrees of freedom and very good mechanical capabilities 40 
are now commercially available. However, prosthetics companies target most of their communication 41 
efforts to end users. Thus they highlight the practical capabilities of the hands, but they usually do 42 
not provide information regarding the technical functionalities and specifications of the prostheses 43 
that can be exploitable by academic researchers. Previous papers presented some hand prostheses in 44 
detail (Belter et al., 2013) but the market changes quickly.  45 

The scientific research field is even more complex and quickly changing. Many papers have been 46 
written in scientific research about the natural control of robotic hands by intact and transradial hand 47 
amputated subjects. Most of the methods rely on the use of sEMG and of pattern recognition or 48 
proportional control algorithms. The first commercial products exploiting pattern recognition to 49 
recognize the movements have recently been released. Targeted muscle reinnervation (TMR) can 50 
allow the exploitation of these methods even on subjects with above-elbow amputations. Benchmark 51 
databases to compare the performance of different methods and setups have been released (Atzori et 52 
al., 2014a). However, several steps are still required to obtain proportional, naturally controlled, 53 
robust and usable robotic hand prostheses (bionic hands). 54 

Since the market and the scientific field are so complex and changing so quickly, it can be difficult to 55 
have a complete overview of them and to remain constantly updated in both fields. This mini-review 56 
aims to be a resource for young and experienced researchers in academia and prosthetic companies 57 
by providing a synthetic but complete overview of the current level of advancement in the 58 
commercial and scientific reality. 59 

2. Market Outline 60 

A relatively wide choice of devices is available to restore the capabilities of hand amputees by 61 
myoelectric robotic prostheses. Such devices are continuously evolving according to technology, 62 
scientific research, market needs and user requirements. The devices usually include two main parts: 63 
prosthetic hands and control systems. 64 

2.1. Prosthetic hands  65 

Currently, hand prostheses include cosmetic prostheses, kinematic prostheses and myoelectric 66 
prostheses. Cosmetic prostheses offer esthetical and psychological support. Kinematic prostheses 67 
also have functional capabilities, since the user can control the opening and closing of a gripper hand 68 
through the motion of the shoulder. Myoelectric prosthesis users can control a battery-powered hand 69 
through the electrical signal emitted by the remnant muscles, usually located in the forearm. 70 

The continuous improvements in the field and the different targets and aims of the papers published 71 
by the companies can make it difficult for researchers to remain updated with the capabilities of 72 
available prostheses. For example, Belter et al. (Belter et al., 2013) performed a very thorough 73 
description of the mechanical properties of prosthetic hands produced by four companies, but in less 74 
than two years several companies produced new versions or made substantial changes to the products 75 
from a mechanical or electronic point of view. Thus, the market and research achievements often 76 
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remain disconnected. 77 

Many prosthetic hands are commercially available. However, few have the capability to reproduce 78 
many movements. The following selection represents some of the currently most advanced hand 79 
prostheses and gives a representation of different companies and approaches: 1) Touch Bionics i-80 
limb Quantum; 2) Otto Bock Michelangelo; 3) Steeper Bebionic v3; 4) Vincent hand Evolution 2. 81 
Table 1 summarizes the most important features that can be useful in a laboratory. The features are 82 
grouped into the following four categories: general technical data, dexterity related features, force 83 
related features and control related features.  84 

2.2. Control systems 85 

Usually two or three sEMG electrodes are located in the socket in correspondence to specific muscles 86 
(Figure 1). A myoelectric impulse (i.e. an increase in the amplitude of the electrical signal emitted by 87 
the muscles) is used to open and close the prosthetic hand. The number of movements can be 88 
increased employing specific (e.g. sequential) control strategies. Such control strategies are usually 89 
still far from being natural, thus controlling prostheses requires a high level of skill and a training 90 
procedure. Control problems contribute to the scarce capabilities and acceptance of sEMG prostheses 91 
(Atkins et al., 1996), but they are likely promising for improvements in a near future. 92 

In Table 1 we summarize some of the most important control related features for the considered 93 
prosthetic hands including: number of electrodes, movement control type, movement command and 94 
particular features of each control system. As can be noticed in Table 1, despite the mechanical 95 
characteristics of the prosthesis allowing to reproduce up to 24 hand movements, the control systems 96 
rely in most cases on few (1-3) electrodes and on sequential control strategies or on specific 97 
movement triggers (in some cases tunable through a mobile app or other strategies). In sequential 98 
control strategies, a specific signal (for example, a simultaneous activation of two sEMG electrodes, 99 
usually called co-contraction) is used to switch between a set of predefined movements. In movement 100 
triggers on the other hand specific patterns of electrode activation are related to specific movements 101 
of the prosthesis. The mentioned methods are not natural, in the sense that they do not correspond to 102 
the movement that the subject would have thought to do before the amputation. However, they offer 103 
robust results, which is one of the main needs in real life. 104 

Several of the considered prostheses include external sources of information as well. In particular, 105 
Touch Bionics i-limb Quantum recently introduced gesture control (recorded via gyroscope, 106 
accelerometer and magnetometer) and grip chips (that use blue-tooth chips attached to specific 107 
objects) to perform movement selection, while Steeper Bebionic exploits finger position encoders to 108 
perform falling object prevention. Sometimes research achievements translate to clinical practice too. 109 
In 2013 a pattern recognition system similar to the ones described in the scientific literature was 110 
made commercially available (http://www.coaptengineering.com/). The Coapt system can include up 111 
to 8 sEMG electrodes. It is generic and it is typically set up to control the number of powered DOFs 112 
the patient's prosthesis has. That is, if a powered elbow, wrist, and terminal device are built into the 113 
prosthesis then the Coapt system is set to control these. If, however the prosthesis only has a powered 114 
terminal device and/or wrist, the Coapt system is set up for those DOFs. Wherever possible, Coapt 115 
performs natural control. The technician is encouraged to work with the patient to determine which 116 
are the most physiological, repeatable, consistent, and intuitive movements to use for control. Slight 117 
variations can be attempted if necessary, also through re-calibration procedures. The number of 118 
natural grasping patterns that can be achieved varies. According to Coapt, typically users can select 119 
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between 3-6 naturally. It should be noted that the physical interconnection of the Coapt system and 120 
several prostheses has yet to be implemented. An example of movement-triggered control that we 121 
received by Coapt is the following one: 122 

1) hand closing: closing prosthesis 123 
2) hand opening: opening prosthesis 124 
3) wrist clockwise / counterclockwise rotation: powered wrist clockwise / counterclockwise 125 

rotation 126 
4) double impulse of natural hand opening: grip A 127 
5) triple impulse of natural hand opening: grip B 128 
6) holding the hand open: grip C 129 
7) single impulse of natural hand opening: grip D 130 

 131 

 132 

 133 

 134 

Figure 1. Scheme of a generic myoelectric control system: (i) for commercial prosthesis 135 
without pattern recognition (blue rectangle); (ii) for research (or control system with pattern 136 
recognition) (red ellipses). The same architecture is assumed in the external forearm. 137 

  138 
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Table 1. Characteristics of the examined prosthetic hands. 139 
 Company name Touch Bionics Otto Bock Steeper Vincent GmbH 

 Prosthesis model i-limb Quantum Michelangelo with 
Axon Bus Technology bebionic v3 Evolution 2 

General 
Technical 

Data 

Weight 
(without battery) 474-515 g ~ 510 g 550 - 598 g  

(365 - 390 g small hand) 380-410g 

Operating Voltage 7.4 V 11.1 V 7.4 V 6-8V 
Battery Type Lithium Polymer Li-Ion Li-Ion Li-Pol 

Battery Capacity 1,300 mAh-2,400mAh 1,500 mAh 1,300-2,200 mAh 1300-2600 mAh 
Number of 
Actuators 6 2 5 6 

Dexterity 

Active Fingers 5 independent 3 5 independent 5 
(+12 active joints) 

Thumb Rotation Powered Powered Manual Powered 
Total number of 

grip patterns 24 7 14 20 

Grip patterns 
available at any 

moment 
7 7 11 20 

Flexible wrist available included available available 

Rotating wrist available 
(active or passive) 

available 
(active or passive) 

available 
(active or passive) 

available  
(only passive) 

Full closing time 0.8 s  
(0.7 s small hand) 0.37 s 0.5 s - 1s 0.8 s 

Finger position 
encoders No 2 motor position 

encoders 5 (one in each actuator) 2 (in thumb actuators)  

Force 

Power Grip 100-136 N ~ 70 N 140.1 N  
(280 N small hand) 60 N 

Lateral Pinch 40 N  
(60 N small hand) ~ 60 N 26.5 N  

(53 N small hand) 15 N 

Adaptive Grip Yes Yes Yes Yes 

Falling object 
prevention 

Active 
(auto-grasp, based on 

accidental sEMG signal 
detection) 

No 

Active  
(auto-grip, based on 

finger position 
encoders) 

Passive 
(spring load) 

Proportional 
Control Yes Yes Yes Yes 

Control 

No of electrodes 1-2 1-2-3 1-2 1-2 wired 

Movement control 
type 

movement triggers, 
mobile app, 

bluetooth grip chips,  
favorite environment, 

gesture control  

sequential, 4-channel 
control 

sequential, Morph RFId 
GRIP selection 

compatible 

single trigger or Vincent 
Morse code 

Movement 
command 

hold open, double 
impulse, triple impulse, 

co-contraction 

different switching 
modes available, fast & 

high signal controls 
rotation in 4-channel 

control 

co-contraction / open-
open signal  

hold signal (opening or 
closing), double signal, 

co-contraction, 
alternating signal 

Particular 
Features 

Various control methods 
thumb rotating manually 

& automatically 

Sensor Hand Speed (stiff 
fingers and harder 
finger tips); Fragile 

objects grasping  

Fully free flexing 
fingers Very low weight 

Feedback No No audible beeps and/or 
vibration (grip changes) 

Vibration (force 
detected via motor 

current & DMS sensors) 
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 140 

3. Scientific Research Outline 141 

Many papers have been written in scientific research about the control of robotic hands and 142 
prostheses by intact and hand amputated subjects. 143 

Usually several electrodes are placed on the forearm of the subject to record the myoelectric signals 144 
(Figure 1) with a dense sampling approach (Tenore et al., 2009; Fukuda et al., 2003; Li et al., 2010) 145 
or a precise anatomical positioning strategy (De Luca, 1997; Castellini et al., 2009a). The most 146 
common control procedures can be subdivided into pattern recognition or proportional control 147 
approaches, which can be applied to sEMG and multimodal signals. 148 

Pattern recognition algorithms are used to classify the movement that the subject aims to perform 149 
according to a label (Scheme and Englehart, 2011). Pattern recognition results provided in several 150 
cases classification accuracy over 90%-95% on less than 10 classes (e.g. Castellini et al., 2009b), 151 
however average results are usually below 80-90% (Peerdeman et al., 2011). Movement 152 
classification methods require movement labeling and they are restricted to a predetermined set of 153 
hand movements. Simultaneous pattern recognition has been studied recently (Jiang et al., 2013b; 154 
Young et al., 2013; Ortiz-Catalan et al., 2013), however usually such procedures consider 155 
simultaneous motions as new classes, thus they can reduce the robustness of the classifier. 156 

Proportional and simultaneous control of a large number of degrees of freedom of the prosthesis can 157 
allow achieving more natural and dexterous control using unsupervised or supervised methods 158 
(Fougner et al., 2012; Farina et al., 2014). Unsupervised methods are usually based on signal 159 
factorization (e.g. through Non-Negative Matrix Factorization, NMF), they require a short calibration 160 
phase and they are relatively independent on the number and exact location of the electrodes (Jiang et 161 
al., 2009, 2014a, 2014b; Muceli et al., 2014). Supervised methods (Ameri et al., 2014a, 2014b; 162 
Gijsberts et al., 2014b; Nielsen et al., 2011; Muceli and Farina, 2012; Hahne et al., 2014) are usually 163 
based on regression techniques (e.g. Linear Regression, LR, Artificial Neural Networks, ANN, 164 
Support Vector Machines, SVM) that require a reliable ground truth for hand kinematics. This is easy 165 
for intact subjects (e.g. using data gloves), but it can be difficult for amputees, for whom the ground 166 
truth can be acquired only via bilateral mirrored contractions (Nielsen et al., 2011) or via visual cues 167 
(Ameri et al., 2014a, 2014b). Recently, semi-supervised methods (NMF) and supervised methods 168 
(LR, ANN) were compared to evaluate the impact of precise kinematics estimation for accurately 169 
completing goal-directed tasks (Jiang et al., 2014b). The results showed that, although the three 170 
algorithms’ mapping accuracies were significantly different, their online performance was similar. 171 
These results underline the hypothesis that good proportional myoelectric control can be achieved by 172 
the interaction and adaptation of the user with the myoelectric controller through closed-loop 173 
feedback. The same hypothesis is also demonstrated in other recent papers on multiple degrees of 174 
freedom for intact subjects (Pistohl et al., 2013; Antuvan et al., 2014) and hand amputees (Jiang et 175 
al., 2014a). Despite most of the proportional studies concentrating on full hand movements (e.g. hand 176 
supination, pronation, rotation, flexion, extension), proportional and simultaneous control has a 177 
strong potential for decoding finger kinematics as well. In particular, recent work described average 178 
correlation coefficients of up to 0.9 for the estimation of single finger movements (Smith et al., 2008) 179 
and 0.8 for the estimation of simultaneous and complex movements (Ngeo et al., 2014).  180 

 Also in scientific research, additional sources of information can be used to improve the 181 
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performance of myoelectric control. Computer vision has been integrated to predetermine the type 182 
and size of the required grasp in relation to the object (Došen et al., 2010; Markovic et al., 2014). 183 
Accelerometers showed excellent capabilities to recognize hand movements using pattern recognition 184 
and regression methods, both alone and in combination with sEMG electrodes (Atzori et al., 2014b; 185 
Gijsberts et al., 2014a; Krasoulis et al., 2015). 186 

A common problem in the field is that often the studies are highly specific and they are not directly 187 
comparable, due to different acquisition setups, protocols and analysis pipelines. Moreover, often the 188 
datasets are not publicly available. The NinaPro project (Atzori et al., 2015) released a publicly 189 
available benchmark with electromyography, kinematic and dynamic data sources from intact and 190 
amputated subjects to help the scientific community to overcome control problems 191 
(http://ninaweb.hevs.ch/). Ninapro was recently used to evaluate regression methods for the 192 
continuous decoding of finger movements from sEMG and accelerometry (Krasoulis et al., 2015), to 193 
apply Dynamic time warping (DTW) in the context of myoelectric control (AbdelMaseeh et al., 194 
2015) and to present the Movement Error Rate, an alternative to the standard window-based accuracy 195 
in pattern recognition (Gijsberts et al., 2014a). 196 

Many factors can theoretically influence sEMG controlled prosthesis, including anatomical 197 
characteristics of the subjects (Farina et al., 2002), training in using myoelectric prostheses (Cipriani 198 
et al., 2011), clinical parameters of the subjects (e.g. level of the amputation, phantom limb sensation 199 
intensity) (Atzori et al., 2016), fatigue, sweating, changes in electrode or arm positioning, surgical 200 
procedures used during the amputation and even cortical reorganization. However, few studies 201 
addressed these effects.  202 

Implanting intramuscular EMG-recording devices reduces the number of parameters affecting the 203 
EMG signal and it can improve simultaneous control of multi-DOF prosthetic wrist and hand (Smith 204 
et al., 2015, 2014). 205 

Targeted muscle reinnervation (TMR) is a surgical procedure that redirects the nerves that used to 206 
control the muscles of the hand to innervate accessory muscles from which surface sEMG is 207 
recorded. Impressive results have been obtained with this method, especially in persons with above-208 
elbow or shoulder amputations (Kuiken et al., 2009). The same technique has also been applied on 209 
muscles transferred to the forearm to better integrate with traditional commercial prostheses 210 
(Aszmann et al., 2015). 211 

The opposite neural direction, i.e. transferring information from the hand prosthesis to the brain, has 212 
been studied in several papers as well. Several attempts have been performed using non-invasive or 213 
invasive methods. Electrocutaneous and vibratory stimulation channels have been extensively studied 214 
in the past (Szeto and Saunders, 1982). TMR represents a promising solution also in this case, since it 215 
theoretically allows a certain amount of sensory feedback (Marasco et al., 2009). However, to date, 216 
the only example of real-time use of neural interfaces for the effective bidirectional control of 217 
dexterous prosthetic hands performing different grasping tasks is given by Raspopovic et al. 218 
(Raspopovic et al., 2014). 219 

Despite the achievements described in this paper, there are still several challenges before amputees 220 
can benefit from the mentioned signal processing developments (Jiang et al., 2012). First, robustness 221 
is probably the most important and challenging problem, in particular for simultaneous and 222 
proportional control.  Second, the sensory-motor loop should be closed with proper feedback 223 
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systems, thus opening new possibilities for effective and intuitive prosthetic control. Third, most of 224 
the studies are performed in controlled laboratory conditions with non-amputated subjects, which do 225 
not adapt to several different real life conditions of amputees (Fougner et al., 2011; Jiang et al., 226 
2013a; He et al., 2014, 2015). 227 

 228 

4. Conclusions 229 

Hand amputation can dramatically affect the capabilities of a person. The augmentation of the 230 
functionalities of the nervous and muscular system through external devices can already improve the 231 
situation of amputees. The market and the scientific field are complex and changing quickly, thus it is 232 
often difficult for young researchers to have a complete overview of them, as well as for experienced 233 
researchers to remain constantly updated in both the fields. In this mini review we provide a synthetic 234 
but complete overview of the current level of advancement in the commercial and scientific reality, 235 
addressing each field in a specific section. 236 

The commercial outline highlights the existence of very advanced prosthetic hands and control 237 
systems. Four of the most advanced prosthetic hands were analyzed, showing important mechanical 238 
and control differences. In particular, the number of actuators ranges between 2 (Otto Bock 239 
Michelangelo), 5 (Steeper Bebionic 3) and 6 (Touch Bionics i-limb Quantum and Vincent Evolution 240 
2) while the number of finger position encoders ranges between 0 (Touch Bionics i-limb Quantum), 2 241 
(Otto Bock Michelangelo, Vincent Evolution 2) and 5 (Steeper Bebionic 3). The first commercial 242 
control system based on pattern recognition has been released and it seems a great advancement with 243 
respect to previous ones. However natural, proportional and simultaneous control of a large number 244 
of degrees of freedom is currently not available. 245 

The scientific research outline shows a large variety of control methods and several possible 246 
improvements. Pattern recognition, proportional control and TMR are extremely promising. 247 
Common sEMG data resources and benchmarks have been proposed recently to compare different 248 
sEMG analysis methods. Most of the factors that can theoretically affect the control of myoelectric 249 
prostheses, such as clinical data (e.g. level of the amputation, phantom limb sensation intensity) were 250 
recently studied. Finally sensorial feedback recently showed very promising advancements. 251 

In conclusion, the path to proportional, naturally controlled, robust and usable robotic hand 252 
prostheses with sensorial feedback (bionic hands) seems to be well initiated and extremely promising 253 
for the coming years even though it is still a challenging work in progress. 254 
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