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Abstract—The growth of the amount of medical image data
produced on a daily basis in modern hospitals forces the
adaptation of traditional medical image analysis and indexing
approaches towards scalable solutions. The number of images
and their dimensionality increased dramatically during the past
20 years. We propose solutions for large–scale medical image
analysis based on parallel computing and algorithm optimization.
The MapReduce framework is used to speed up and make
possible three large–scale medical image processing use–cases:
(i) parameter optimization for lung texture segmentation using
support vector machines, (ii) content–based medical imageindex-
ing, and (iii) three–dimensional directional wavelet analysis for
solid texture classification. A cluster of heterogeneous computing
nodes was set up in our institution using Hadoop allowing for
a maximum of 42 concurrent map tasks. The majority of the
machines used are desktop computers that are also used for
regular office work. The cluster showed to be minimally invasive
and stable. The runtimes of each of the three use–case have been
significantly reduced when compared to a sequential execution.
Hadoop provides an easy–to–employ framework for data analysis
tasks that scales well for many tasks but requires optimization
for specific tasks.

Index Terms—large–scale; medical; image analysis; big data;
scalability; MapReduce; Hadoop; support vector machines;
content–based image retrieval; texture analysis;

I. I NTRODUCTION

In the past 20 years, the amount of imaging data produced
on a daily basis by companies, institutions and hospitals has
grown exponentially. With the increased use of three– or four–
dimensional imaging techniques (digital security, videos, 3D
temperature maps, functional medical imaging) over the past
few years this growth has even accelerated. Analyzing such
vast and varied amounts of data to find relevant information
is becoming increasingly challenging. Innovative software
solutions are therefore needed to achieve efficient digital
visual data management, including automated data analysis
and retrieval. Recent advances in computer vision have brought
promising tools for efficient management of visual data [1] in
two major areas:

• automated analysis and event–detection,
• content–based indexation and retrieval.

The former thoroughly analyzes visual data in order to de-
tect, characterize and quantify anomalies or events, while
the latter aims to retrieve images based on visual similarity
(i.e., content–based image retrieval, or ”CBIR”). Both con-
figurations rely on the concept of visual features (e.g., color

intensity, texture and shape of objects, ...) which describe the
visual content. Based on a visual feature space, the detection–
based tools assign a given input instance (i.e., image or image
region) to a predefined class (e.g. ”normal” or ”abnormal”),
whereas CBIR–based approaches determine a similarity score
between two instances/documents from which a ranked list
of results can be built. As a consequence, the efficiency of
the system (being either detection– or CBIR–based) is closely
related to the ability to catch subtle specificities of the data.
Recent progress in image processing and machine learning
makes it possible to extract flexible image features, which
are then mapped to a given set of classes corresponding to
a specific task. Such techniques allow for analyzing multi-
dimensional images with high levels of semantics, provided
that a sufficient amount of training data representing intra-
class variability is available. However, the process of extracting
intricate features from large datasets of 3D/4D images, as well
as training machine learning algorithms and global system
optimization are extremely demanding in terms of computa-
tion time, storage capacity and network bandwidth [2]. For
instance, 3D convolutions with multi–oriented, multi–scale
filter banks — that have proven to efficiently analyze 2D
— are very computationally intensive and yield many more
coefficients than the number of voxels in the original image,
which can lead to memory and storage problems. The next
step, which involves selecting the relevant coefficients and
using them as the input for machine learning algorithms,
is again highly computationally intensive, and an exhaustive
search for optimal parameters requires multiple runs of global
experiments.

The three key factors (computation, storage and network
bandwidth) therefore represent the biggest potential bottle-
necks to large–scale data analysis. Further studies are required
to identify non–optimized components and data analysis pro-
cesses and most importantly propose flexible and scalable
infrastructures that are able to cope with the exponential
growth of visual data. Several approaches exist:

• Single Host (server with 12 physical processor cores with
hyper–threading1 & 96 GB of RAM (Random Access

1Hyper-threading: technology from IntelR© which makes each phys-
ical processor core appear to the Operation System as 2 virtual
cores, which improves the execution of multi–threaded code. See
http://en.wikipedia.org/wiki/Hyperthreading (as of 29 Au-
gust 2012) for more information.

http://arxiv.org/abs/1510.06937v1


Memory)),
• Small local cluster (8 hosts with 2–4 physical cores with

hyper–threading and 16 GB of RAM, plus the above–
mentioned server),

• Alternative infrastructures, such as GPUs (Graphical Pro-
cessing Units),

• Cloud computing infrastructures, such as Amazon’s Elas-
tic Cloud Compute (EC2).

In the context of this paper, the first two solutions are tested
and compared, in order to determine the best possible option
for a given analysis task. Finding the optimal solution is a
problem of potential interest to many companies and also
research projects.

II. RELATED WORK

Due to the growth in the data size and the development of
new computationally intensive algorithms, research has been
performed in creating parallel processing algorithms [3] and
developing cloud computing systems [4], [5]. MapReduce [6]
proposed initially by Google2 has become one of the most pop-
ular distributed computing frameworks, due to its simplicity
in setup and programming. Hadoop [7] is a very popular open
source implementation of MapReduce with a large commu-
nity of users. Although being a powerful computational tool,
MapReduce should not be seen as a “one–fits–all” solution [8].
For example, as demonstrated in [9] on a data warehousing
use–case using astrophysical data sets MapReduce is outper-
formed by database management systems (DBMS). In [10],
it is stated that MapReduce should be seen as an “extract–
transform–load” (ETL) tool and complement DBMS in tasks
that require both data warehousing and intensive processing.

In the field of image processing, apart from cloud
computing, parallelization using graphical processing units
(GPU) [11] is often used. However, as stressed in [11], GPU
hardware architectures differ much form other architectures
and should be taken into consideration when designing parallel
processing algorithms. MapReduce has recently been used for
large–scale image annotation [12], [13] and efficient image
description and analysis [14]. In [12] a parallel support vector
machine (SVM) [15] algorithm is proposed for automatic
image annotation, while in [13] a dataset of 30 million images
are automatically labeled using the MapReduce framework,
although no details on the parallel implementation are given.
Several image analysis algorithms (e.g., image feature ex-
traction, local descriptors clustering and image registration)
adaptation to the MapReduce framework is discussed in [14].
Content–based image retrieval is another field that combines
large amounts of data with computationally intensive tasks. For
these reasons, indexing large image datasets using visual fea-
tures is expected to be a well–suited task for the MapReduce
framework. However, a few studies have also used MapReduce
for the online part of the retrieval [16], [17], [18]. To overcome
its inherent limitations, data warehousing and storage tools like

2http://research.google.com/archive/mapreduce.html,
as of 29 August 2012.

Hive [19] and HBase (an implementation of Google’s BigTable
abstraction [20]) that are built on top of Hadoop are often used.
In [16] a CBIR system, NIR, on top of Hadoop, Nutch [21] and
LIRe (Lucene Image Retrieval) [17] is presented. However, a
very small data set is used for evaluation of the retrieval time.
Another system called Distributed Image Retrieval System
(DIRS) is described in [18] uses LIRe and HBase. Data sets
of up to 100,000 images are used for testing the query times.
When using datasets above 20,000 images, the retrieval times
reported are restrictive for online use even though they are
faster than without Hadoop use. Other approaches to deal
with these challenges have included implementing efficient
indexing schemes such as an inverted index [22] or locality
sensitive hash (LSH) [23] on top of the Hadoop file system
(HDFS) [24]. While [23] reports promising results our belief
is in accordance with [8], [10] that for online tasks parallel
DBMS should be the first choice.

In the medical field, cloud computing is also starting to
find use. CCMedII [25] is a proposed medical information
file exchanging and sharing system built on top of Hadoop.
Medical Image File Access System (MIFAS) [26] is an access
system for images using HDFS. MapReduce has also been
used in fluorecence image analysis tasks in [27] and as a
framework of the Hadoop–GIS query system in [28] for
analytical pathology imaging. These systems use HBase and
Hive for data storage and warehousing respectively. Moreover,
Hadoop has been used for anatomical landmark detection [29]
and medical image registration [30].

In this paper, we use the MapReduce framework to speed up
and make possible three large–scale medical image processing
use–cases:

• parameter optimization for SVMs, which aims at identify-
ing parameter values yielding best classification accuracy
of lung textures in high–resolution computed tomography
(HRCT) [31],

• SIFT (Scale–Invariant Feature Transform) feature extrac-
tion [32] and bag–of–visual–words indexing of large
image datasets, which extracts features from each image
and then indexes it using these features,

• 3D texture feature extraction using the Riesz transform.

III. M ETHODS

A parallel computing environment was set up in our network
using Hadoop3, an open–source implementation of Google’s
MapReduce framework. Detailed descriptions of MapReduce
and Hadoop are provided in Sections III-A and III-B. The three
”real–world” applications mentioned above were convertedto
Hadoop programs, allowing performance testing and compari-
son as well as identification of bottlenecks and other problems.
The specificities of these three use cases that can potentially
benefit from the MapReduce parallel computing environment
are detailed in Sections III-C, III-D and III-E, respectively.

3http://hadoop.apache.org/, as of 29 August 2012.



A. MapReduce

MapReduce is a programming model and an associated
implementation developed by Google for processing large
datasets. Typically the computation runs in parallel on a
cluster of machines of up to several thousand nodes (usually
commodity personal computers) in order to finish the pro-
cessing task in a reasonable amount of time. Users define the
required computation, which must be embarrassingly parallel,
in terms of a map and a reduce function with the underlying
system automatically distributing it across the cluster. The
system itself manages machine failures and inter–machine
communication to ensure efficiency of the network and disks.
This approach is a reaction to code complexity by hiding the
messy details of fault tolerance, data distribution and load
balancing in a library. The computation can as well be run
across multiple cores of the same machine(s) [6], [7]. Google’s
implementation of MapReduce runs on top of the Google File
System (GFS), a scalable distributed file system for large data–
intensive–applications providing fault tolerance. Fileson GFS
are typically split into chunks of 64 MB and distributed across
chunkservers with a default replication factor of three [33].
MapReduce cannot solve every problem, but being a general
data–processing tool there is a wide range of algorithms that
can be expressed such as machine learning algorithms, graph–
based problems and image analysis [7].

1) Programming Model:A typical MapReduce program is
split into a Map phase and into a Reduce phase. The Map
function has a key/value pair as input and produces a set of
intermediate key/value pairs as output:

(k1, v1) → list(k2, v2). (1)

After the map phase the MapReduce library groups all inter-
mediate values for the same intermediate key I. The Reduce
function accepts an intermediate key I with its set of values
from the map output (supplied via an iterator) as input and
merges these values together to produce a possibly smaller set
of values as output. Normally the number of output values per
reduce invocation is zero or one:

(k2, list(v2)) → list(v2). (2)

It is worth mentioning that the map input keys and values are
related to a different domain than the keys and values of the
intermediate and reduce output [6].

B. Hadoop

Hadoop was created by Doug Cutting, the creator of Apache
Lucene4. The origins of Hadoop are found in Nutch5 (Lucene
subproject), an open source web search engine supposed to
scale to billions of pages. However, realizing that it was not
possible with their architecture at that time, Cutting and his
partner Mike Cafarella, inspired by the publication of the GFS

4http://lucene.apache.org/, as of 29 August 2012.
5http://nutch.apache.org/, as of 29 August 2012.

paper in 2003 [33], decided to write an open source implemen-
tation named Nutch Distributed File System (NDFS)6. In early
2005, after the publication of the Google paper that introduced
MapReduce to the world in 2004 [34], the Nutch developers
presented a working implementation of MapReduce. As NDFS
and the MapReduce implementation in Nutch were considered
as potentially useful to a broader field of application they were
moved out of Nutch and became an independent subproject of
Lucene called Hadoop. Shortly later, Cutting joined Yahoo!7,
which provided a dedicated team just for the extension of
Hadoop. This makes Yahoo! the largest contributor of Hadoop.
Confirmed by its success, Hadoop turned into an own top–
level project at Apache in 2008 [7]. Since then, various large
companies such as Amazon8, Facebook9, Microsoft10 have
started using Hadoop [35].

The Apache Hadoop Common library is written in Java and
consists of two main components: the MapReduce framework
and HDFS11, which implements a single–writer, multiple
reader model [24], [36]. However, Hadoop does not solely
support HDFS as an underlying file system. It also provides
a general–purpose file system abstraction making it possible
to integrate other storage systems, such as Amazon S312,
which targets the Amazon Elastic Compute Cloud13 server–
on–demand infrastructure. In our own Hadoop environment,
we exclusively make use of HDFS as file system. Currently,
the Linux operating system is the only officially supported
Hadoop production platform [7], [37].

The purpose of HDFS is to store large datasets reliably and
to stream them at high bandwidth to user applications. HDFS
has two types of nodes in the schema of a master–worker
pattern: a namenode, the master and an arbitrary number
of datanodes, the workers [7]. The HDFS namespace is a
hierarchy of files and directories with associated metadata
represented on the namenode. The actual file content is split
into blocks of typically 64MB where each block is typically
replicated on three namenodes. The namenode keeps track of
the namespace tree and the mapping of file blocks to datan-
odes. An HDFS client wanting to read a file has to contact the
namenode for the locations of data blocks and then reads the
blocks from the closest datanode since HDFS considers short
distance between nodes as higher bandwidth between them. In
order to keep track of the distances between datanodes HDFS
supports rack–awareness. As soon as a datanode registers with
the namenode, the namenode runs a user–configured script
to decide which rack (network switch) the node belongs to.
Rack–awareness also allows HDFS to have a block placement
policy that provides a trade–off between minimizing write cost
and maximizing data reliability, availability and aggregate read

6http://wiki.apache.org/nutch/
NutchDistributedFileSystem, as of 29 August 2012.

7http://www.yahoo.com/, as of 29 August 2012.
8http://www.amazon.com/, as of 29 August 2012.
9http://www.facebook.com/, as of 29 August 2012.
10http://www.microsoft.com/, as of 29 August 2012.
11http://hadoop.apache.org/hdfs/, as of 29 August 2012.
12http://aws.amazon.com/s3/, as of 29 August 2012.
13http://aws.amazon.com/ec2/, as of 29 August 2012.



bandwidth. For the creation of a new block, HDFS places
the first replica on the datanode hosting the writer and the
second and third replicas on two different datanodes located
in a different rack [24].

A Hadoop MapReduce job, a unit of work that the client
wants to be performed, consists of the input data (located
on the HDFS), the MapReduce program and configuration
information. Native Hadoop MapReduce programs are written
in Java, however Hadoop also provides the Hadoop Streaming
API which allows writing map and reduce functions in lan-
guages other than Java by using Unix standard streams as the
interface between Hadoop and the user program. In Hadoop
there are two types of nodes that control the job execution
process: one job tracker, and an arbitrary number of task
trackers. The job tracker coordinates a job run on the system
by dividing it into smaller tasks to run them on different task
trackers, which in turn transmit reports to the job tracker.
In case a task fails, the job tracker is able to automatically
reschedule the task on a different available task tracker. In
order to have a task tracker run a map task the input data needs
to be split into fixed–size pieces. Hadoop runs one map task
for each split with the user-defined map function processing
each record in the split. As soon as a map task is accomplished
its intermediary output is written to the local disk. After that
the map output of each map task is processed by the user–
defined reduce function on the reducer. The number of map
tasks running in parallel on one node is user–configurable
and heavily dependent on the capability of the machine itself,
whereas the number of reduce tasks is specified independently
and is therefore not regulated by the size of the input. In case
there are multiple reducers, one partition per reducer is created
from the map output. Depending on the task to accomplish,
it is as well possible to have zero reduce tasks in case no
reduction is desired [7].

C. Support Vector Machines

Segmentation and classification in medical image analysis
consist of assigning a label (e.g., healthy, diseased) to a given
voxel represented in a feature space (e.g., color intensity, tex-
ture measures). To automate the decision process, supervised
machine learning algorithms can, after a training phase, be
used to predict test voxel classes based on input visual features.
SVMs are such a supervised learning algorithm, which allows
establishing nonlinear decision boundaries between labeled
instances in feature spaces. It aims at minimizing the general-
ization error, which is the classification error obtained with the
instances that were not used in the training phase [15]. SVMs
implement a nonlinear numerical approach to build a maximal
separating hyperplanew considering a two–class problem.
Two parallel hyperplanes are constructed symmetrically on
each side of the hyperplane that separates the data. The
goal is to maximize the distance between the two external
hyperplanes, called the margin [38], [15]. An assumption is
made that the larger the margin, the better the generalization
error of the classifier. Trainingl1–norm SVMs consists in

iteratively solving:

min
w,ξ,b

{

||w||2
1

2
+ C

n
∑

i=1

ξi

}

, (3)

subject to yi(K(w,xi)− b) ≥ 1− ξi and ξi ≥ 0,

whereξ is the slack variable of the soft margin,C is the cost of
the errors,xi are the image instances (e.g., regions of interest
to be categorized)i = 1 . . . n represented in the feature space
and yi are the corresponding labels.K(xi,xj) is called the
kernel function and allows a nonlinear mapping of the initial
feature space. In this work, we consider the kernel Gaussian
radial basis function as:

K(xi,xj) = exp(
−||xi − xj ||

2

1

2σ2
). (4)

To achieve optimal classification performance on the test set
(i.e., generalization performance), the parametersC and σ

require optimization using cross–validations and exhaustive
grid–searches [39], which are computationally intensive.In
this work, we address the optimization problem by paralleliz-
ing each independent value couple(C, σ) of the grid search.

D. Image Indexing

Content–based image search engines use one or more ex-
ample images as query and search in an image data set to
return a set of images that are relevant judging the visual
appearance represented by visual features. For this task, the
dataset should be indexed in a comparable way beforehand.
This indexing consists of extracting visual features from each
image, creating an optimal representation of the image using
these features and storing this representation using an efficient
indexing structure. This pipeline, depending on visual features,
indexing techniques, and size of the image dataset, can be
computationally intensive.

A state–of–the–art approach in large–scale image retrieval
is the “bag–of–visual–words” representation [40]. The method
uses local descriptors (e.g., SIFT) to describe potentially
interesting (or salient) regions of the image. These descriptors
are quantized using a fixed set of “visual words”vi and
the image is described as a histogram of the occurrence
frequency of the visual words. The final image descriptor of
image I, called bag–of–visual–words, is defined as a vector
F(x) = {v̄1, . . . , v̄k} of frequencies̄vi of visual words such
that, for each SIFT vectorf(x) extracted from the imageI:

v̄i =

nf
∑

l=1

nf
∑

j=1

gj(f(xl)), ∀i = 1, . . . , k,

where

gj(f(x)) =

{

1 if dε(f(x), vj) ≤ dε(f(x), vl) ∀vl ∈ V,

0 otherwise.
(5)

dε refers to the Euclidean distance between two vectors.V is
the set of visual words that is derived by clustering a training



set of local descriptors in the feature space (R
128 in SIFT case)

and taking the cluster centers:

V = {v1, . . . , vk}, vi ∈ R
128, i = 1, . . . , k (6)

This method, although achieving good performance, can be
data set–dependent and has a variety of parameters to be
tuned and optimized. When large–scale datasets are involved
in scientific research or real–life applications, the optimization
of parameters, the indexing of new datasets or the regular
update of existing index can be highly time–consuming.

E. Solid 3D Texture Analysis Using the Riesz Transform

Volumetric medical image interpretation is time–consuming
and error–prone because the radiologists have to exhaus-
tively browse image series having sometimes several thousand
slices [41]. Evaluation and characterization of organs and
biomedical tissue require mental reconstructions of volumetric
shapes and textures, which is little intuitive. Consequently,
algorithms for the characterization of solid three–dimensional
texture patternsVx,y,z defined for each coordinatex, y, z ∈
Vx,y,z ⊂ R

3 with an intrinsic dimension of 3 are becom-
ing increasingly important to characterize and quantify the
appearance of 3D medical textures in computed tomography
(CT), magnetic resonance imaging (MRI), 3D ultrasound (US),
and other volumetric imaging modalities used in clinical
routine [42]. A recently developed texture analysis technique
based on Riesz wavelets for 2D lung texture classification in
HRCT showed promising results in [31], [43]. Riesz wavelets
yield a multiscale and multi–orientation steerable filterbank
allowing to analyze local orientations and scale with infinites-
imal angular and spectral precision [44]. The framework is
also available in 3D and was used by Chenouard et al. for
biomedical image denoising in [45]. We use it in this work for
solid 3D texture analysis using a publicly available database
of synthetic textures [46]. The goal is to carry out preliminary
studies on synthetic 3D data for a further use with volumetric
medical data.

The numberM of Riesz components constituting the fil-
terbank is related to the number of scaless, the order of the
Riesz transformN , and the data dimensionalityd as [44]:

M = s ·

(

N + d− 1

d− 1

)

= s ·
(N + d− 1)!

N !(d− 1)!
. (7)

The computational complexity is therefore strongly dependent
on d, and quickly becomes not affordable withd = 3 on
a regular desktop computer for a large image collection. In
this work, we simply distributed the image database over
the various nodes of the Hadoop cluster in subgroups of 10
volumes, from a total of 750 image series of dimensions
64 × 64 × 64. In total, 75 map tasks were generated with
this process.

IV. RESULTS

In this section, the parallel computing environment based on
Hadoop is first described and evaluated using a simple “Word
Count” application as baseline. Then, solutions are proposed

for the various large–scale medical image analysis challenges
introduced in Sections III-C, III-D and III-E.

A. Hadoop Cluster

The in–house Hadoop cluster that was set up for testing
purposes uses a variety of nodes with a varying number of
CPU (Central Processing Unit) cores and storage capacities,
which are connected to network equipment with varying
speeds (1Gbps switch, 100Mbps switch, leased line). The
cluster is composed entirely of computers that are employed
by users for their daily work and has no dedicated nodes. The
server referenced in Fig. 1 also hosts several other services,
including several web applications and a numerical computing
environment that can put a strain on the machine’s global
performance.

The computer labeled Hadoop Master in Fig. 1 has multiple
roles. It acts as:

• job tracker,
• name node,
• secondary name node (performing periodic checkpoints

of the HDFS)14,
• data node,
• task tracker.

The master node represents a single point of failure (SPOF),
which is due to the way Hadoop is structured15.

The remaining nodes only possess the data node and task
tracker roles. The number of simultaneous map tasks is tailored
to each computer’s performance. Since the computers are
actively used during the day, at least 2 logical cores were
not allocated to the Hadoop TaskTracker process, ensuring
that common daily tasks could still be run smoothly. A larger
amount of cores (14) were left unused on the server, since it
is often running other processes with a heavy CPU load.

The network setup is also quite heterogeneous, with some
nodes being connected to a Gigabit Ethernet switch, others to
a slower 100Mbps switch and the server being located in a
different building, which is linked to the cluster via a leased
line. This leased line is under heavy load most of the time and
its average transfer rate is close to 100Mbps.

Initial testing was done using a simple Word Count appli-
cation (which counts the number of instances of each word in
a text document), in order to:

• confirm that the cluster was functioning properly,
• learn how to write programs for the MapReduce frame-

work,
• tweak the configuration of the nodes to optimize the

cluster’s performance.

B. Job Execution Time Variability

In order to establish a baseline for the variability of the
execution time of a job in different scenarios (during the day,
at night, on week–ends, etc.), a basic Word Count program

14http://wiki.apache.org/hadoop/FAQ#HDFS, as of 29 August
2012.

15http://wiki.apache.org/hadoop/SPOF, as of 29 August 2012.



Fig. 1: Overview of the architecture of the Hadoop cluster. The numbers included near the machine icons indicate the number
of simultaneous tasks that can be executed on each node.

was run at 2–hour intervals over a period of 10 days. This
experiment gave us a clearer picture of the impact that
hardware–related factors (CPU load of the nodes, available
network bandwidth, etc.) can have on the global performance
of the cluster. Job execution time variability is depicted in
Fig. 2.

Fig. 2: Job execution time variability measured at several times
of the day with the Word Count example. Blue dots indicates
weekdays, whereas red dots were run on week–ends.

C. Support Vector Machines

The search for optimal SVM parametersC andσ in Eq. (3)
and (4) was translated to a MapReduce problem. The goal is to
find the optimal value couple(C, σ) allowing best classifica-
tion performance of five lung texture patterns associated with
interstitial lung diseases in high–resolution computed tomogra-
phy. The image instancesxi are 2D32×32 blocks represented
in terms of energies of Riesz wavelet coefficients [31], [43].
The global classification accuracy is estimated using a leave–
one–patient–out cross–validation (LOPO CV) with 85 cases.
First, a files containing all possibleC and σ parameter
combinations was generated. The latter serves as the input for

the Hadoop job, where each line containing a value couple
represents an independent map task.

Job execution times varied considerably depending on the
values of the parameters, depending on the number of opera-
tions required to solve Eq. (3). This was problematic since the
total execution time was set by longest map tasks. The cause of
this problem was therefore investigated and a solution to opti-
mize the global execution time of the job was designed based
on the assumption that the number of operations required to
solve (3) is linked to classification accuracy.(C, σ) values that
are requiring a large number of operations suggest that boththe
kernelization of the feature space and the cost of errors lead to
complex decision boundaries requiring heavy optimizationand
result in poor classification accuracy. Interrupting such map
tasks early is therefore a convenient way to reduce the global
runtime of the Hadoop job without compromising optimal
classification accuracies. Two approaches were considered:

• Limiting the runtime of a task: by using thread interrup-
tion techniques it would be possible to stop the execution
of a map task after a given amount of time, resulting in
the loss of the calculations that were in progress.

• Interrupting tasks based on the reference execution time
tref for solving Eq. (3) taken by the fastest task after
2 folds of the LOPO CV. All tasks with runtimesti
exceedingtref by more than a factor ofF after 2 LOPO
CV folds are terminated and assigned an accuracy of -
1 to make the interrupted tasks recognizable in the final
output as:

ti ≥ F · tref. (8)

The second approach was considered being a cleaner way
of reducing the execution time because it does not force
the interruption of the task. It was used with a kill factor
F = 1.7, which divided the total runtime by almost5.5 (∼50h
=> ∼9h15min), with no impact on the maximum accuracy.



Fig. 3: Lung texture classification using SVMs: the relation
between the runtime (color–coded) of a map task and its
accuracy are depicted. Black dots indicate tasks that would
be stopped by the termination clause (see Eq. (8)).

Figure 3 shows the results of a job where no tasks have been
interrupted, with superimposed black circles for each taskthat
would be stopped when using the optimized algorithm.

D. Image Indexing

Three subsets of the ImageCLEF16 2011 medical task
dataset [47], containing 1,000, 10,000 and 100,000 images
respectively, were used as test datasets. Two approaches were
used; 1) a component–based approach and 2) a monolithic
approach. The first one consists of two components; the
feature extractor and the bag–of–visual–words indexer. Inthis
approach 1), the intermediate output of the extractor is stored
on the disk before the indexer uses it as an input. This
is a common practice for component–based evaluation and
parameter tuning. The monolithic approach 2) is not storing
any intermediate output and performs the whole pipeline each
time it is initiated.

We consider the component–based approach as being an
input–output (IO)–intensive task due to the writing and reading
of the outputs of the extractor component. Runs using multi–
threading techniques with 1, 2 and 3 threads were performed
on a single machine to serve as baseline. Preliminary results
showed that even for the smaller datasets of 1,000 and 10,000
images, the multi–threading run using 3 threads outperformed
the MapReduce tasks in the 42–task cluster, taking about half
the time for the extractor phase. For 100,000 images, the
multithreaded runs scale linearly for 1–3 threads. It requires
approximately 7 hours with 3 threads for the whole pipeline
(4.9 hours for the feature extractor and 2.7 hours for the
bag–of–visual–words indexer). In comparison, MapReduce
required more that 14 hours using 42 concurrent map tasks (13

16http://www.imageclef.org/, as of 29 August 2012.

hours for the feature extractor and 1.5 hours for the bag–of–
visual–words indexer). Although the MapReduce framework
reached performance comparable to the single machine by
increasing the number of reducers, the amount of resources
used to achieve such a performance showed that MapReduce
may not be suited for IO–intensive tasks.

For the monolithic runs 2), two approaches were taken.
The first one uses 6, 12 and 24 simultaneous tasks on a
single node (i.e., the PowerEdge R710 Server) for the indexing
MapReduce run, while the second uses the same number of
tasks distributed among the nodes of the Hadoop cluster. A
text file containing a list of the image file paths was given as
input and the same number (50) of images per map task, was
given in all runs. A single reducer was used in all runs. The
results are shown in Figure 4.

E. Riesz 3D

The particularity of this use case resides in the fact that the
available application was developed as a series of MatlabR©

scripts (a proprietary language for the MatlabR© numerical
computing environment17), and a considerable effort would
have been required to translate the whole code into Java,
the native Hadoop programming language. Luckily, a Hadoop
feature called streaming allows using any executable written
in any programming language to be used as the mapper and
reducer of a Hadoop job. The only requirement for Hadoop
streaming is that the executables must be able to read from the
standard input streamstdin and write to the standard output
streamstdout18. Using this feature, it was possible to keep
to majority of the code as–is, requiring only minor adaptations
to create a Mapper and Reducer script. In order to maximize
the scalability of this solution and avoid monopolizing several
MatlabR© licenses for extended periods of time, the free and
open–source MatlabR© clone GNU Octave19 was deployed on
all the nodes of the cluster as a runtime environment for the
scripts, which ran successfully without any modifications.

The runtime of the Riesz 3D use case withs = 4, N =
4, d = 3 in Eq. (7) was measured in the following three
scenarios: one single task on one host, without using Hadoop;
42 concurrent tasks on the Hadoop cluster when the nodes
were idle; 42 concurrent tasks on the Hadoop cluster with a
normal load on the nodes. The respective runtimes obtained
are 131h32m42s, 6h29m51s and 5h51m31s.

V. D ISCUSSIONS ANDCONCLUSIONS

Large–scale medical image analysis and retrieval is ad-
dressed in this work using the MapReduce framework. Three
medical image analysis use–cases were implemented: opti-
mization of SVMs for lung image classification, image in-
dexing for content–based medical image search, and three–
dimensional texture processing. The three use–cases reflect the

17http://www.mathworks.com/products/matlab/, as of 29
August 2012.

18http://hadoop.apache.org/common/docs/r0.15.2/
streaming.html, as of 29 August 2012.

19http://www.gnu.org/software/octave/, as of 29 August
2012.
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Fig. 4: Comparison of runtimes using a single node and the distributed Hadoop cluster. For the datasets of 10k and 100k
images, the single machine run does not scale linearly with more than 12 simultaneous tasks.

various challenges of processing medical visual information in
clinical routine: parameter optimization, indexation of image
collections with hundreds of thousands images, and multi–
dimensional medical data processing.

A cluster of heterogeneous computing nodes was set up
in our institution using Hadoop, which currently allows fora
maximum of 42 concurrent map tasks on 9 distinct machines,
from which 8 are simple desktop computers with daily users.
The cluster was designed to be minimally invasive on each
machine and regular users of the desktop computers did not
encounter problems when Hadoop jobs were running. The
runtime variability is depicted in Fig. 2, which shows an
excellent job runtime stability. This stability is the result of
the cluster design, which does not allow for overbooking the
computing resources. Jobs that were run between 10:00 and
12:00 as well as 18:00 and 22:00 generally ran faster than
the ones executed during the night or the afternoon. The
same occurs for the weekday versus week–end differentiation,
which shows that both categories span the whole spectrum
of measured execution times. A maximum difference of 28%
was observed between the shortest time (7m) and the longest
one (8m58s). This variation is expected to be smaller with
long–running, computationally intensive jobs, for which the
overall impact of a temporarily slowed down CPU or network
connection should be less significant.

Parallel grid search for optimal SVM parameters was carried
out on the Hadoop cluster. The suspected link between the
runtime of a map task(C, σ) required for solving Eq. (3) and
the resulting classification accuracy was confirmed and is well
illustrated in Fig. 3. It can be observed that most of the tasks
with long runtimes resulted in poor classification accuracies
and that no(C, σ) value couple leading to best accuracies was
interrupted. The total runtime was reduced from 50h to 9h15m
using the task interruption method. A minimum number of
concurrent map tasks is required to ensure that some fastest

tasks are included in the initial estimation of the runtime.

Two approaches for content–based image indexing were
compared and implemented in the MapReduce framework:
component–based versus monolithic indexing. The former is
convenient to separately optimize feature extraction and the
bag–of–visual–words indexer because it does not require to
run the whole pipeline for each optimization. However this
costs time and storage space when you perform the whole
pipeline due to the output writes and reads. This was observed
with an unexpectedly long runtime for the feature extractor
with the MapReduce framework in the component–based
approach. The process was slowed down because it requires
to write the features to a very large CSV (Comma–Separated
Values) file of approximately 100 Gb for 100,000 images.
The result is consistent with previous work that showed that
the MapReduce framework was not performing well with IO–
intensive tasks [9]. The monolithic strategy showed to be well–
suited to the MapReduce framework, which allowed indexing
100,000 images in about one hour using 24 concurrent tasks
(see Fig. 4 (c)). The performances of the monolithic approach
when running on a single node versus distributed nodes is
compared. Whereas runtimes using 6 concurrent map tasks
are similar (see Fig. 4 (a) and (b)), in the case of 12 and
24 nodes the results for large datasets differ. In contrast to
the multi–node approach, the single–node times do not scale
linearly. This illustrates the advantage of using several nodes,
which benefits from the distributed memory and disk access
of each separated node.

The parallelization of solid texture processing based on
non–separable three–dimensional Riesz wavelets allowed to
reduce a total runtime from more than 130h to less than
6h, while keeping the code in the original Matlab/Octave
programming language with Hadoop streaming. There is a
22x speedup between the single–task sequential execution and
the fastest Hadoop job. It is also noteworthy to point out



that the execution during an idle period (during which all
the nodes including the powerful server were not used for
any other intensive tasks) actually performed worse than the
job that was executed in more standard conditions (with no
special precautions taken to free up resources on the nodes).
This fact confirms that there is a non–deterministic aspect
to the execution of Hadoop jobs. Using Hadoop streaming
saves time and hassle in the development phase, but it also
has a few drawbacks. First of all, a performance loss is
inevitable when using the streaming feature as opposed to a
“native” Java program. Second, the existing application (e.g.,
Octave) may not be optimized for parallel usage, resulting
in a non–negligible slowdown when using a large number
of simultaneous tasks. Figure 5 shows that the runtime gain
decreases rapidly as the average runtime for a single task
increases in a fairly linear fashion. Hardware bottleneckssuch
as shared CPU cache memory or non–optimal utilization of
Intel R©’s Hyper–threading20 feature are a probable cause of this
slowdown. These results are aligned with the observations on
the non–linear scaling of runtimes for the monolithic image
indexing use case in Figure 4 (c) and highlights once more
the advantage of running concurrent map tasks on separated
nodes using Hadoop.

Fig. 5: Evolution of the job’s total runtime and average runtime
of a single task with an increasing number of simultaneous
tasks executed on one host for the Riesz 3D use case in Octave.

In future work, we plan to extend the cluster on demand
using cloud computing such as Amazon Elastic MapReduce
(Amazon EMR)21. This would allow to mix local resources
with fully manage resources that are potentially availablein
large number and can help to increase response times at limited
cost.

Overall Hadoop has shown its utility for large scale medical
image computing. In most tasks very positive results could
be obtained helping the projects to scale with limited local
resources available.

20http://www.intel.com/content/www/us/en/
architecture-and-technology/hyper-threading/
hyper-threading-technology.html, as of 29 August 2012.

21http://aws.amazon.com/elasticmapreduce/, as of 29 Au-
gust 2012.
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