
Dynamic and Configurable Mathematical
Modelling of a Hydropower plant

Research in Progress Paper

Michael Barry and René Schumann

Smart Infrastructure Laboratory
HES-SO Valais / Wallis ,

Rue de Technopôle 3, 3960 Sierre, Switzerland
michael.barry@hevs.ch | rene.schumann@hevs.ch

Abstract. Switzerland, among many other countries in Europe, are
transitioning their energy economy away from nuclear power to renew-
able energies. One common, but key technology to make this transition
possible is hydropower plants, of which there are 604 plants producing
around 56% of Switzerland’s energy production. To facilitate this transi-
tion we must modify the current operation of hydropower to compensate
for recent developments in the energy market that have appeared due to
increased use of other renewable energies. Mathematical modelling is a
common method for planning the operation of a hydropower plant. How-
ever, mathematical models are know to be problem specific and static
and therefore they are expensive to modify. In this paper we approach
this problem through a modular configurable and dynamic design for
the commonly used mathematical models and show how it can be imple-
mented using the GAMS modelling language. We discuss an interactive
configuration process and our research approach to automating it.

1 Introduction

Mathematical modelling of operating a hydropower (HP) plant is well studied
and establish in industry [1–3]. Current models are highly accurate and have little
room for improvements. However, the environment they operate in is changing
drastically, forcing us to modify and adapt our models. The energy market is
shifting from a push to a pull market, drastically challenging how a HP plant
needs to operate. In a push market, the HP plant could produce as they see fit,
adjusting to seasonal patterns. However, in a pull market, the HP plant needs
to adjust according to the energy price. Due to renewable energies and their
dependency on the weather, the energy price fluctuates. These fluctuations are
more difficult to predict compared to seasonal fluctuations. In particular, such
fluctuations cannot be predicted a year in advance, but rather required short
term planning. In addition, the intra-day market has become a potential benefit
for HP plants. The intra-day market allows producers to trade their energy in
terms of 15 minute time slots. As the HP plants can transition from different

2

production levels quicker than other types of power plants, they have an inherent
advantage in this market. There are also speculations that the time frame for
the intra-day market may be reduced even further. These changes in the market
environment force us to modify our models accordingly. In particular, we must
be able to plan short term by having light models with a short runtime so that
more current data can be used to more accurately predict the fluctuations.

This is a challenge, as the problems has become bigger due to the smaller
time frame. In addition, flexibility in the production of a HP plant has become
valuable due to high fluctuations in the energy price and therefore many HP
plants are being modified to enable pump storage. However adjusting currently
used operational models can become complex making analysis of the potential
in such modifications difficult.

These issues call for mathematical models that are more flexible. In this paper
we propose a dynamic and configurable design for the mathematical models that
can be easily modified for current market needs. In particular it is possible to
run simulations that vary greatly in their size and required runtime as well
as their functionality from just one model through configuration. We propose a
modular design in Section 2, analysis the mathematical needs as well as a GAMS
implementation of these needs for such a model in Section 3, report the current
state in development in Section 4 and then discuss our research direction that
could build on our design in Section 5.

2 Modular Design

Mathematical models are known to be extremely problem specific and complex
making it difficult to implement a dynamic and configurable model. We use a
modularised approach, inspired by object orientated design, to overcome this
difficulty. Each element in a model, such as a turbine or a market, is separated
into modules. Each module then contains all variables and function for that
given element. To remove an element from the model, one can simply exclude
the module itself. For example, a module ”markets” sums up the profits from
each market. If a market is removed, this module still operates by summing up
the profit from the remaining markets. As a result, it is still a valid model, but
no logger utilises one of the markets. Adding or removing a module allows us to
easily configure a model as shown in Fig 1.

We consider our design to be dynamic as it can be easily extended. The
initial model is extremely simple and only uses simplified representations of the
real world. We use a dynamic design to incrementally expand the model to
incorporate further constraints, building a more accurate representation of the
real world in the process.

We consider our design to be configurable as it can be easily configured for
individual case studies. A model is a general design which we then configure to
simulate individual HP Plants. For example, different HP plants use different
turbines and therefore we must be able to easily switch the turbine used in our

3

Fig. 1. Graphical representation of how a set of modules form a configuration.

model through a simple interface rather than by redesigning our model. This
allows us to simulate many HP plants with just one model.

Our design also gives a level of abstraction that can help keep an overview of
the model and is particular useful if a a model is designed by several developers,
as it allows developers to work on individual modules without knowing about or
interfering with the work on another module. In figure 2 we show the design of
the model.

Fig. 2. Graphical representation of the models design with each modules dependencies.

4

2.1 Dependencies

To configure a model, one must simply define which modules are to be used.
The set of modules that are used is said to be a configuration. However, not all
configurations are said to be valid. For example, market 1 is dependant on the
module and the markets module is dependant on the main module. Therefore,
a configuration using market 1 must have the modules markets and main also
enabled. We can also define these dependencies in a logical mannerism, such as
market 1 implies market 2, or more formally as shown below:

market1→ markets

The complete set of dependencies can therefore be defined as shown below

markets→ main
market1→ markets
market2→ markets
market3→ markets
technical→ main

turbine1→ technical
turbine2→ technical
turbine3→ technical

2.2 Conditionals

In addition to the dependencies, modules may have to consider additional con-
ditionals that arise from the physical world. For example we wish to only use
one turbine and therefore only one turbine module may be active in a config-
uration. In such a case we describe the relationship to it’s parent module with
an ⊕ (exclusive OR) conditional, as a valid configuration must have only one of
the child modules active. It is is similar to the ⊕ used in logic gate, except that
we consider that there can be several inputs, which is the equivalent of several
⊕ combined. The truth table is given below for three inputs. Note that if only
one child node exists, it implies that the child module must always be active in
a valid configuration and therefore the parent and child node are dependant on
each other.

A B C XOR

F F F F
F F T T
F T F T
T F F T
F T T F
T F T F
T T F F
T T T F

5

In other cases where any combination of the modules exist we can describe
the relationship as a tautology, as any combination of the related modules can
be considered as true. Therefore on logical terms it can be ignored.

If we consider the ⊕ conditional in our design diagram, we can graphically
describe the validity logic as shown in Figure 3.

Fig. 3. Graphical representation of the logic. Lines represent dependencies and lines
with a bar across symbolise the XOR operator.

To express the validity logic formally, we first describe the ⊕ conditionals as
shown below.

main→ technical
technical→ turbine1⊕ turbine2⊕ turbine3

main→ markets

We must then add our ⊕ conditionals to the dependencies defined previously,
which can then be simplified to:

markets↔ main
market1→ markets
market2→ markets
market3→ markets
technical↔ main

technical↔ turbine1⊕ turbine2⊕ turbine3

This design provides a level of abstraction from the underlying mathemati-
cal model, allowing us to configure the model without requiring understanding
of the mathematical model. However, to implement the design, we must con-
sider how the logical relationships can be realised in mathematical terms. The
mathematical model is described in the next Section.

6

3 Mathematical Model

The mathematical model describes the environment in which the HP plant oper-
ates in mathematical terms. Typically, a model consists of variables, constraints
(functions) and an objective function. For this paper we focus on the constraints
and what is required in mathematical terms to implement our modular design.

We identify three operations that are required for a dynamic and configurable
design:

– Add function

– Replace function

– Aggregate function.

These operations are used to modify the model in an iterative way without
the need of redesigning previously built components. Below, in equations 1 - 6,
a simple mathematical representation of our Model is given and will be used as
an example.

max.
∑
i,m

Pi,mQi,m (1)

Qi,m = Ri,mα (2)

Si = Si−1 + Ii −
∑
m

Ri,m (3)

Si ≤ Smax (4)

Si ≥ Smin (5)

∑
m

Qi,m ≤ Qmax (6)

Where Pi,m in equation 1 is the price at time interval i for market m, Qi,m

in equation 1 is the produced energy for time interval i and market m, Ri,m in
equation 2 is the water released from the reservoir at time interval i for market m,
α in equation 2 is the efficiency of the turbine (the amount of energy produced
per water used), Si in equation 3 is the storage level at time interval i, Ii in
equation 3is the inflow of water into the reservoir at time interval i, Smax in
equation 4 is the maximum storage level of the reservoir, Smin in equation 5
is the minimum storage level of the reservoir and Qmax in equation 6 is the
maximum production level.

7

3.1 Add function

The add function operation is used in the mathematical module to enable the
operations required to add a module and represents a tautology. Using this
method we can add or remove a module (or constraint) without breaking the
model. Mathematically, all it requires is the definition of another function. For
example, the function below is added, constricting how much water must be left
in the reservoir for the last time interval tfinal.

Stmax
≥ Sfinal (7)

Where tmax is the last time interval of t and Sfinal is the final storage level
at tmax.

We use the General Algorithmic Modelling Software (GAMS) as a modelling
language. Each module is defined in a separate file. We define the above con-
straint in a file initial storage constraint.gms as such:

Equation
f i n a l s t o r a g e (t)
;

f i n a l s t o r a g e (t) . .
s t o r a g e f i n a l =l= s to rage (t) $ (ORD(t) eq CARD(t))
;

The module can then be included in the model by adding the following include
statement to the main.gms file.

$INCLUDE i n i t i a l s t o r a g e c o n s t r a i n t

3.2 Replace function

The replace function operation allows for a a constraint to be replaced and is used
to implement the ⊕ conditional. When multiple implementations of a constraint
exist, we use this operation to force the model to only accept one implementation.
Mathematically, this is done by simply replacing a function. For example, the
reservoir may lose water through other effects such as evaporation. This affect
can be added by replacing equation 3 with equation 8 to accurately represent
the water loss:

Si = Si−1 + Ii −
∑
m

Ri,m − Li (8)

Where Lt is the water loss at time interval i.

In GAMS we can implement this by implementing the storage module called
storage.gms as below:

8

Equation
s to rage (i)
;

s t o rage (i) . .
s t o rage (i) =e= sto rage (i −1) + in f l ow (i)

− sum(m, r e l e a s e (i ,m))

a file storage evap.gms is then implemented using the modified constraint:

Equation
s to rage (i)
;

s t o rage (i) . .
s t o rage (i) =e= sto rage (i −1) + in f l ow (i)

− sum(m, r e l e a s e (i ,m))
− l o s s (i)

We can then include the modules by removing, or commenting out, the in-
clude statement for the storage module and replace it with a new include state-
ment:

∗$INCLUDE sto rage
$INCLUDE storage evap

3.3 Aggregate function

Modules that relate to each other as a tautology can also be implemented us-
ing the aggregate function operator. Rather than adding a constraint as the
add function operator does, it uses an aggregate function that then allows each
element in that function to be modified by a separate module. For example,
each market on which a HP plant can trade on is defined in separate functions
contained within a separate module. It can trade on any number of the defined
markets and it is important that the model can exclude a market without having
to redefine the function that calculates the total income from all markets, which
is given in equation 1. Equation 1 sums up the income from each market. We
introduce a new variable X to represent the income and can therefore redefine
equation 1 as such:

max.
∑
i,m

Xi,m (9)

We can then define the functionality for each market separately:

Xi,1 = Pi,1Qi,1 (10)

Xi,2 = Pi,2Ci,2 (11)

9

Where Ci,1 is a capacity bid. We can exclude markets by replacing the income
functions with a zero value as such:

Xi,1 = 0 (12)

The zero value is then ignored within the sum function. In GAMS, we can
implement the markets module in file markets.gms as such:

Equation
income to ta l (i)
;

i n come to ta l (i) . .
i n come to ta l (i) =e= sum(m, income (i ,m))

Market1 can then be implemented in a file called market1.gms:

Equation
income (i)
;

income (i) . .
income (i) =e= p r i c e (i , 1) ∗ product ion (i , 1)

Market2 is implemented in a file called market2.gms:

Equation
income (i)
;

income (i) . .
income (i) =e= p r i c e (i , 2) ∗ product ion (i , 2)

Once these files are implemented, a market can be added or removed using
the following include statement in the main.gms file:

$INCLUDE markets . gms

$INCLUDE market1 . gms
∗$INCLUDE market2 . gms

As the include statement for market 2 is commented out, only market 1
would be considered. As GAMS automatically assigns a zero value to the in-
come variable for market 2, it would be ignored within the sum function in
markets.gms.

Using these three operations we are able to iteratively expand the model
during development. In addition, we can remove these expansions again without
the rest of the model failing. This allows flexibility and opens up to the possibility
of a configurable and dynamic design.

10

4 Configuration

A defined set of active modules is considered to be a configuration and the above
logic defines the validity of such a configuration. We can then consider all valid
configurations as the search space for a configuration problem. As now we have a
defined search space, an ideal configuration must be selected. In the initial stage
we simply use an interactive configuration process in which a user can select the
desired configuration through an interface.

In this interface we can define a configuration, which defines further condi-
tions, such as market1 is true. Once these are defined and combined with the
previous logic, we can check the validity with our logic to verify the validity of
our configuration. This in turn is fed back to the interface to help guide the user
to valid configurations.

However, we wish to move towards an automatic configuration process based
on two objectives: the runtime and the scale of the model. The required time
to solve the model (runtime) greatly depends on the configuration. Using our
method, it is possible to configure an extremely basic and easy to solve model
or a large but more realistic model. To facilitate this we must know more of the
relationship between the model’s size and it’s runtime. We have implemented
a multi objective evolutionary algorithm based on the SPEA2 algorithm [6] to
explore this relationship by exploring the search space of all valid configurations
using runtime and the size of the model as objectives. This generates a Pareto
front of the objectives, showing a clear relationship and is described in our paper
submitted to the Energy Informatics conference [5]. However, as the model still
needs to be extended before relevant understanding of the search space can be
gained, we discuss this and other further work in Section 6.

5 Current State

Currently we have implemented a simple model using our modular design and
we have implemented a Java application to configure the model. Through adding
output modules to the model, the Java application is also able to automatically
find all relevant output files and produce various 2D and 3D charts. This can
be used to display variable values graphically and can help in understanding the
behaviour of a model or identifying any problems. The evolutionary algorithm
has already shown that our design works and can show a simple relationship
between the size of the model and the runtime. The model itself is still currently
very simple and consists only of around 20 modules. However, it is expected
that the model will be expanded to a much larger size as part of our project
in the context of the SNSF supported project NRP70 Energy Turnaround. To
test our model we have organised two case studies with our project partners in
Switzerland, who have kindly provided the required data.

11

6 Research roadmap

The aim of our research is to develop methods for configuring mathematical
models that are based on a modular design. In particular, we develop methods
that considers the relationship between the runtime and the complexity of the
model. As one would expect, there is a direct relationship between the com-
plexity of a model and the runtime. Our evolutionary algorithm based on our
basic model is already capable of showing that. However, we wish to expand
the configuration search space by extending our mathematical model and test
weather this basic relationship still exists, or whether more advanced patterns
such as the easy-hard-easy pattern [4] can be observed. Such knowledge is valu-
able in the configuration process, as configurations are then identified which have
a relatively high complexity and a low runtime, giving us a fast and accurate
mathematical models.

In addition, we will analyse the stability of the search space, as mathemat-
ical models are prone to be unstable and therefore small changes in the model
can often have a large impact on the runtime. The stability represents whether
similar configurations also have a similar runtime. The stability of the search
space is greatly dependant on the variables we use to measure the runtime and
the complexity. The runtime is fairly simple to measure accurately. However, the
complexity is more difficult. Several measurements exist and a feature selection
process may be required to select what measurements best represent the prob-
lems complexity. A stable search space is essential for the configuration process
as it would allow us to use methods beyond a simple interface, allowing us to
move from an interact configuration process to an automated configuration pro-
cess. Iterative methods, such as the evolutionary algorithm developed, require a
a stable search space.

In addition, we wish to use methods that can use the knowledge of the search
space to quickly and accurately predict the runtime of a model without having to
run it. This would require methods for capturing the knowledge gained from the
search space exploration and using it to predict the runtime of a configuration.
Once we show that the relationship between the complexity and runtime can be
established, we can make a more formal analysis of what effects the runtime and
whether it is linked to which of the mathematical operations we used to connect
the modules with.

From a developers perspective we also wish to extend our current design and
develop a method for automatically creating the validity logic, whether by trial
and error methods or utilising comment within the code of the mathematical
model. As we would simply need to test if the model compiles, this could be
generated quickly and would save the developer the need to generate the logic
manually

Acknowledgements

This project is supported by SNSF as part of the National Research Programme
NRP70 Energy Turnaround.

12

We also wish to acknowledge the work from our project partners Prof. Dr.
Hannes Weight and his PhD student Moritz Schillinger from Basel University
who support us on modelling the markets.

References

1. Alfieri, L., Perona, P., Burlando, P.: Optimal water allocation for an alpine hy-
dropower system under changing scenarios. Water Resources Management 20(5),
761–778 (2006), http://dx.doi.org/10.1007/s11269-005-9006-y

2. Guo, S., Chen, J., Li, Y., Liu, P., Li, T.: Joint operation of the multi-reservoir system
of the three gorges and the qingjiang cascade reservoirs. Energies 4(7), 1036–1050
(2011), http://www.mdpi.com/1996-1073/4/7/1036

3. Álvaro Jaramillo Duque, Castronuovo, E.D., Sánchez, I., Usaola, J.: Optimal op-
eration of a pumped-storage hydro plant that compensates the imbalances of a
wind power producer. Electric Power Systems Research 81(9), 1767 – 1777 (2011),
http://www.sciencedirect.com/science/article/pii/S0378779611000940

4. Mammen, D.L., Hogg, T.: A new look at the easy-hard-easy pattern of combinatorial
search difficulty. JAIR 7, 47–66 (1997)

5. Michael Barry, Moritz Schillinger, H.W., Schumann, R.: Configuration of hydro
power plant mathematical models. In: Submitted to Energieinformatik 2015 (2015)

6. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evo-
lutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut
für Technische Informatik und Kommunikationsnetze (TIK) (2001)

