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Abstract—Due to the high impact that energy consumption
of buildings has at global scale, it has been stated the need of
achieving energy-efficient buildings to reduce CO2 emissions and
energy consumption at global scale. In this work we propose to
model the energy consumption associated with services provided
in buildings to help select the best strategies to save energy. To ver-
ify the feasibility of the proposed approach using measurements
of relevant parameters affecting, we carry out some analysis in
a reference building of which we have contextual data. Firstly,
we provide a complete characterization of this building in term
of its energy consumption and generate accurate building models
able to predict its energy consumption given a concrete set of
inputs. Finally, considering the generated energy usage profile
of the building, we propose some concrete control actions and
strategies to save energy.

Keywords—Data intelligence analysis; Microgrid; Energy infor-
mation management; Advanced Metering Infrastructure;

I. INTRODUCTION

By 2020 there will be 7.5 billion people in the world and
consumption will increase by 75% compared to 2000, equally
split between developing and developed countries. This means
an increase of 37.5% in energy consumption every 10 years.
These factors have driven research on sustainability in energy
production, distribution, storage and consumption.

Furthermore, there are the European 20-20-20 objectives1:
to decrease by 20% gas emissions with greenhouse effect
(GHG); to decrease by 20% the energy consumption; and
to increase by 20% the production of renewable energy. It
is important to highlight that buildings are responsible for
40% of total EU energy consumption and generate 36% of
GHG [1]. This indicates the need to achieve energy-efficient
buildings to reduce their CO2 emissions and their energy
consumption. Moreover, the building environment affects the
quality of life and work of all citizens. Thus, buildings must be
capable of not only providing mechanisms to minimize their
energy consumption (even integrating their own energy sources

1http://ec.europa.eu/clima/policies/package/index_en.htm

to ensure their energy sustainability), but also of improving
occupant experience and productivity.

Analysis of the energy efficiency of the built environ-
ment has received growing attention in the last decade [2]
[3]. Various approaches have addressed the energy efficiency
of buildings using predictive models of energy consumption
based on usage profile, climate data and building character-
istics. Nevertheless, most of the approaches proposed to date
only provide partial solutions to the overall problem of energy
efficiency in buildings, where different factors are involved in
a holistic way, but until now have been addressed separately
or even neglected by previous proposals. This division is
frequently due to the uncertainty and lack of data and inputs
included in the modeling process, so that analysis of how
energy is consumed in buildings is incomplete [4].

The integration and development of systems based on In-
formation and Communication Technologies (ICT) and, more
specifically, the Internet of Things (IoT) [5], are important
enablers of a broad range of applications, both for industries
and the general population, helping make Smart Buildings
a reality. But most of the approaches to the problem of
energy efficiency in Smart Buildings present partial solutions
regarding monitoring, data collection from sensors and control
actions. The IoT has provided vast amounts of data that can
be analysed deeply in order to reveal interesting relationships,
which can be used to generate models able to anticipate and
respond efficiently to certain events. Methods, techniques and
tools from diverse disciplines can be combined to help analyse
such datasets [6]. In that sense, Big data and IoT are a perfect
combination that can be applied to Smart Buildings scenarios
for energy efficiency.

The approach of this paper involves applying insights from
Big data algorithms to sensed data in Smart Buildings. We
select the most suitable Soft Computing (SC) techniques to
manage these data with the aim of enabling real-time systems
anticipation and optimization of the energy consumption in
buildings. We propose a solution for data processing to gen-
erate energy consumption models of buildings which can be



used to select the optimal measurements and strategies to save
energy. Firstly, we analyze what the main drivers of the energy
consumed in buildings are. For this analysis we use the data
measured by sensors installed in the building, and thus generate
the predictive model that estimates its daily energy consump-
tion. As a real case where energy saving must be achieved,
we present an industrial building with high levels of monthly
energy consumption involved in thermal comfort provision.
In this building, the first stages of experimentation have been
already carried out following the approach proposed in this
work. Analysis of the generated models has led to energy
saving strategies being applied. The structure of this paper
is as follows: Section II presents our approach to generate
energy consumption maps of buildings to help us define the
best strategies and action to save energy. Section III details the
energy usage characterization of the building used as reference,
the process of generation of the energy consumption maps
of the building. Section IV describes the analysis extracted
from the models generated following the approach proposed in
this paper. Finally, Section V provides conclusions and future
directions of our work.

II. METHODOLOGY

Our approach to design optimum strategies to save energy
in buildings proposes to monitor the contextual conditions of
buildings to identify what parameters (among those presented
in the previous section) are involved in energy consumption.
In this way, from this set of parameters affecting energy
consumption, we can extract the input data to be included
in the estimation of the target building energy consumption
model.

Bearing in mind all these parameters, it is possible to de-
sign optimum strategies to save energy taking into account both
the evolution of the affecting parameters and the consequence
of such evolution in the energy consumption of the target
building. Therefore, the approach proposed to design optimum
strategies of energy saving in buildings is the following:

1) Analyze the energy consumption profile associated to
each service provided in the building. In this way, it
is possible to identify variables affecting the energy
consumption of each service.

2) Analyze the relation among the evolution of such
variables and the energy consumed. Thus, it is possi-
ble to select variables with the most relevant impact
in the energy consumption.

3) Provide behavior patterns of the variables identified
as relevant, including their uncertainty. We propose to
include as inputs of the model such behavior patterns
together with the associated sensed data.

4) Implement a predictive building model able to esti-
mate the evolution of the energy consumption given
such a set of inputs.

5) Design optimum strategies of control to save energy
in the building based on the estimated evolution of
the energy consumption.

Regarding the 4th step of our approach, which proposes
to implement predictive models of the energy consumption
of buildings, in this paper we propose a procedure based
on applying different SC techniques according to the specific

goal to be achieved. This general procedure will be instanced
later into the specific case of our reference building used for
experimentation. After carrying out these steps, an estimator
is able to predict the energy consumption of the analyzed
building in an on-line way using the building model generated.

III. ENERGY CONSUMPTION CHARACTERIZATION

Our test bed is located in the buildings of the Debiopharm
Group. Debiopharm is a Swiss-based global biopharmaceutical
group of companies with a focus on the development of
innovative prescription drugs that target unmet medical needs.
It is located in Martigny, Switzerland. In this activity sector, the
security and the quality of the productive process of the build-
ing is crucial. The information system deployed enables the
visualization in real time of different stages of the production
process. Each parameter monitored in the building is gathered
every second in an SQL database. The automation system is
flexible enough to integrate new functions and facilitates the
maintenance of the installation.

It has been stated that the impact of HVAC on the energy
consumption of a building represents 76% of the total in Euro-
pean countries [7]). As regards the thermal comfort provided
in our reference building, due to its high volume, we focus on
modeling this consumption.

Different time periods can be identified in which the
number of occupants and their behavior are usually similar
in the target building. These cases are when the building is
empty (between 00:00 and 07:00, and between 17:00 PM and
23:59), when workers come into the building to start their tasks
(between 07:00 and 09:00), and when people leave the building
to have lunch (between 11:00 and 14:00) or finish their work
day (between 15:30 and 17:00). Furthermore, in this company
it is obligatory to be working during the time periods 09:00
- 11:00 and 14:00 - 15:30. Bearing this in mind, we can use
these periods of time to model the patterns of occupancy and
people’s behavior in this building, and then generate the model
of the building energy consumption based on these time ranges.

The energy consumption patterns of this building for
thermal comfort, taking only into account the productive
process and its occupancy patterns, are similar every working
day. Thus, we decided to analyse the impact of changes in
environmental parameters in each one of the energy consump-
tion patterns associated to the same production process and
occupancy pattern.

For the energy consumption characterization of the refer-
ence building, we only consider the work days of the year
2013. Note that there is energy consumption due to thermal
comfort in the target building during bank holidays and week-
ends due to the maintenance of products and the associated
thermal comfort restrictions, but during these days there is no
controllable parameter affecting energy consumption, i.e. there
are no people, and so the comfort service provided these days
is already adjusted to the minimal comfort requirements for
the safe maintenance of products.

Once the influence of time planning in the energy con-
sumption of the building has been identified, we split the
productive time planning of this building into different time
periods with the aim of providing a different model of the



energy consumption associated to each one them. In this way,
for the model associated to the time period when the building
is empty, the energy consumption is due only to the thermal
comfort requirements associated to the quality and safety of the
products’ maintenance. For the model associated to the time
in which the building presents a constant number of people
in it, the energy consumption for thermal comfort is due to
both the quality and safety of the maintenance of products,
and the comfort requirements of people. Furthermore, taking
into account the flexibility in the working time of people, we
distinguish the following three time periods which will be used
to provide a different predictive energy consumption model of
the building associated to them:

• No occupancy: [00:00, 07:00] and [17:00 - 23:59]

• Constant occupancy: [09:00, 11:00] and [14:00, 15:30]

• Variable occupancy: [07:00, 09:00] and [11:00, 14:00]
and [15:30, 17:00]

Bearing all these aspects in mind, we distinguish between
when the building is empty and when not. For the first case,
we propose some strategies to reduce the energy consumption
only considering the impact of environmental conditions (see
Section IV). But for the case when the building is not empty,
we decide to generate a building model able to estimate the
energy consumption for thermal comfort, taking into account
both the environmental conditions and the occupancy patterns;
in this way, it is possible to design more specific strategies to
save energy in the target building since people can be involved
in such strategies. The implementation of such a model is
described below.

A. Generating the energy consumption models of the reference
building

As already mentioned, due to the features of our reference
building, we focus on modeling its energy consumption asso-
ciated to the time periods in which the building is occupied.
Taking into account the approach to generate building models
presented in Section II, we describe now the computational
techniques selected for generating the energy consumption
model of the target building. These techniques were selected
because they presented the best results.

Table I. SUMMARY OF THE EXTRACTED FEATURES

Feature
1 Mean outdoor temperature (◦C/h)
2 Mean outdoor humidity (%/h)
3 Mean outdoor pressure (Pa/h)
4 Mean indoor temperature (◦C/h)
5 Mean indoor humidity (%/h)
6 Mean indoor pressure (Pa/h)

1) Data collection. During this first stage, we collect
data about outdoor/indoor temperature, humidity and
pressure. Considering each one of the sensed param-
eters, “snapshots“ of the energy consumption (EC)
are collected over short periods of time (each minute
of every day during a year). Such measurements
are associated to specific vectors of environmental
parameters measured outside and inside the building
(Z(t)). Several data collection processes are carried
out, considering different context conditions. Thus,

the building models generated will be sufficiently
representative to cover different contextual conditions
(different seasons for instance). So, the set of data
pairs for the training of our building model is:

(EC(t), Zt), t = 1, 2, . . . , N (1)

where N is the number of data instances collected
during one hour of monitoring, Z(t) ∈ Rk and
EC(t) ∈ Rn refer to the environmental parameters
vector associated to the energy consumption mea-
sured at the instant t.

2) Pre-processing. The pre-processing unit is respon-
sible for transforming the measured data. Besides,
feature vectors are extracted from the data for use
in energy consumption estimation. The different pro-
cessing techniques applied in this stage are:
• Transformation based on the raw dataset col-

lected. During the transformation, compact
representations of the input data, namely fea-
tures, are extracted, which will be used later
for energy consumption estimation. The val-
ues within the dataset are grouped into win-
dows of 60 samples (one sample per minute),
and each window is processed by several fea-
ture extraction methods, producing a feature
vector that can be used to generate the clusters
and train the classifier. The features adopted
are summarized in Table I.

• Filtering. During this process a filter is applied
that removes features extracted from the train-
ing data set that do not vary at all or that vary
too much.

• Normalization. All values in the given dataset
are normalized during this phase. The result-
ing values are in the [0,1] interval for every
feature extracted from the initial dataset.

• Feature selection. We apply Principal Com-
ponents Analysis (PCA) in conjunction with
a ranker search mechanism. PCA is a widely
used technique for reducing dimensionality in
high-dimensional data, identifying the direc-
tions in which the observations most vary.
If we consider EC(i) as multi-dimensional
observations and u as an arbitrary direction
in this multi-dimensional space, the principal
components are calculated by optimizing the
following equation:

1

m
·
m∑
i=1

(EC(i)T · u)2 (2)

Dimensionality reduction is accomplished by
choosing a sufficient number of vectors to
account for a given percentage of the variance
in the original data (by default 0.95). With the
aim of reducing the final computational load
of the estimation mechanism, we searched the
optimum number of attributes to represent the
energy consumption profile of our reference
building. After this analysis, we found that
outdoor temperature, humidity and pressure



were the features selected by the ranked
feature combination technique used by the
PCA mechanism implemented in the WEKA
toolkit2. Therefore, the number of features
was reduced from the initial proposal of 6 to
3. Which will be denoted as f1, f2, f3. Note
that indoor environmental conditions are di-
rectly the consequence of outdoor conditions,
which is why not all of them are selected as
principal features by the PCA. So, the energy
consumption associated to thermal comfort
of our reference building is due to outdoor
environmental changes.
Considering this vector of features, eq. (1) can
be rewritten as:

{[f1(t), f2(t), f3(t)], Zt}, t = 1, 2, . . . , N
(3)

At this point, we generate the maps of the
building based on the selected features. The
stages described below refer to the mechanism
based on such building maps.

3) Clustering
During this stage, the input data division according
to the distribution of the values of these features is
carried out, the data being grouped according to the
identified clusters, whose centroids are associated to
landmarks.
We compared two techniques commonly used for
clustering, the Simple Expectation Maximisation
(EM) and the Simple K Means [8] in terms of success
in classification by different classifiers (that is the
next stage). These techniques were evaluated with
10-fold cross validation over our dataset, in which
the original sample was randomly partitioned into
10 equal size subsamples, a single subsample being
retained as the validation data for testing the model,
and the remaining 9 subsamples used as training data.
The results can be found in Tables II and III. These
results show that the use of EM clustering yields a
better classification. We then selected EM for our
implementation.
EM assigns a probability distribution to each instance,
indicating the probability of belonging to one of the
identified clusters. EM can decide how many clusters
to create by cross validation, although the number
of clusters to be generated can also be specified
a priori. We propose an automatic search for the
number of clusters that optimizes both classification
success and accuracy in the energy consumption
estimation (carried out later). For this, we follow a
similar approach to that presented in [9]. Each one
of the generated clusters is a vector of mean values
of the outdoor environmental conditions forming the
centroid of the cluster, and a vector of deviation
values associated to the clusters. These vectors can
be represented mathematically as: µCi = [µf1, µf2,
µf3, µZ], and σCi = [σf1, σf2, σf3, σZ]; where µCi
and σCi denote the mean and deviation of the centroid

2http://www.cs.waikato.ac.nz/ml/weka/

of the landmark i, respectively.
4) Landmark classifier

The landmark classifier assigns each new vector of
features to a specific landmark previously determined
by the clustering algorithm. In order to select a
suitable classification technique, we analysed the per-
formance of different classifiers. The corresponding
results are summarised in Tables II and III. As can
be seen from the table, the meta-classifier LogitBoost
[10] provided the highest classification success rate
for the case of constant occupancy, and the tree-
classifer Random Tree [11] when the occupancy is
variable. Both evaluations are performed with 10-fold
cross validation over the input dataset.
After classifying the energy consumption landmark
for each new measurement, we can focus on the out-
door temperature characterization of such landmark,
and ignore the rest of the sensed values to carry out
the energy consumption estimation.

5) Energy consumption estimator
The next step consists of carrying out an energy
consumption estimation using the knowledge avail-
able for the associated landmark. For this, a Radial
Basis Functions Network [12] for each landmark is
computed as regression technique, which uses all
training data associated to every landmark to estimate
the energy consumption according to its associated
outdoor temperature vector.
RBF networks find approximate solutions in the form
of weighted sums of basis functions based on refer-
ence data. The main advantages of using RBF to solve
our estimation problem are its scalability and easy de-
ployment under different contextual condition; when
a variable number of centroids has been identified
previously.
In our case, for each energy building consumption
division associated to one landmark, an RBF network
is implemented.

B. On-line energy consumption estimation

After the off-line phase, energy consumption can be es-
timated using the building maps generated during the off-
line stage, and the RBF based estimator implemented. A
schema of the steps carried out during the on-line phase of
our mechanism can be seen in Figure 1. The input data are
the outdoor environmental measurements around the buildings.
From which the features are extracted. This feature vector
is classified as belonging to a particular landmark cluster.
Finally, the building energy consumption is estimated using
the corresponding RBF that has been implemented for this
landmark.

IV. EVALUATION AND ANALYSIS

Using all data collected about the outdoor environmental
parameters and the energy consumed for thermal comfort in
the reference building, we analyze the results obtained in term
of the success in classification and the estimation error in the
energy consumption. Table IV summarizes the results. The
first column refers to the number of data (ND) considered
for each cluster automatically generated after clustering (NC),



Table II. CLASSIFICATION SUCCESS RATE OF DIFFERENT CLUSTERING AND CLASSIFICATION TECHNIQUES WHEN OCCUPANCY IS CONSTANT

Classification EM Simple K Means
Decorate 94.7% 92.6%
LogitBoost 95.7% 91.7%
Bagging 92.8% 89.2%
J48 94.7% 91.3%
Random Forest 94.5% 91.1%
Random Tree 94.9% 91.6%

Table III. CLASSIFICATION SUCCESS RATE OF DIFFERENT CLUSTERING AND CLASSIFICATION TECHNIQUES WHEN OCCUPANCY IS VARIABLE

Classification EM Simple K Means
Decorate 96.9% 93.4%
LogitBoost 97.1% 94.2%
Bagging 96.7% 93.2%
J48 97.5% 95.2%
Random Forest 97.9% 93.1%
Random Tree 98.5% 95.4%
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Figure 1. Computational model for estimating the energy consumption of
buildings

and the column with maximal energy consumption (maxEC)
refers to the maximum value of energy consumption for such
case. Finally, the four last columns refer to the average and
deviation of success in classification (SC) and the estimation
error (EE), all of them evaluated with 10-fold cross validation
over the input dataset .

We can see that for the first model generated (when the
number of people in the building is constant), the error in the
estimation is lower than for the case with a variable number
of people. This is because the 2nd model presents greater
variability related with the number of people in the building,so
that the model loses accuracy in the estimation, which is
translated into a greater error in the estimation. The results
obtained for these models demonstrate the suitability of the
techniques finally selected for implementing the mechanism
proposed to generate energy building consumption models.

After proposing these models, and according to the results
obtained from them, the optimal strategies to save energy in the
target building can be selected. Some examples of strategies
to save energy and which are being performed currently, are
enumerated below for the two cases proposed in this problem.

• When the building is empty, the indoor temperature

necessary inside the building to ensure the good state
of the different products can have a value in the con-
fidence interval: [5◦C, 25◦C]. Then, depending on the
outdoor temperature measured, the indoor temperature
can be configured with the most similar value to this,
always being within the mentioned comfort interval,
and considering the expected time when the comfort
conditions must change, ensuring the energy conserva-
tion in the building for the minimum associated energy
consumption.

• When the building is occupied, depending on the
energy consumption estimated by the implemented
model of the building for the next hour, different
strategies to save energy can be carried out, such as:

1) Adjusting the work of people to shorten the
periods of time with a variable occupancy in
the building.

2) Providing occupants with comfort conditions
that save energy while maintaining suitable
levels of comfort. For this, it must be con-
sidered that when the building is not empty,
the indoor temperature that must be present
in this building should have a value within to
the confidence interval: [16◦C, 26◦C]. Then,
depending on the estimated energy consump-
tion, we select the value most similar to
the outdoor temperature for establishing the
indoor temperature while taking into account
comfort conservation at the same time.

3) If there is a source of renewable energy, its
optimum distribution in the building should
be designed in accordance with any expected
abrupt changes in the outside environmental
conditions, and consequently, in the energy
consumption.

V. CONCLUSION AND FUTURE WORK

The ICT and especially IoT provide a quantity of informa-
tion and our role is to provide the maximum of knowledge of
different uses cases identified. In this work, we want decrease
the energy consumption by the prediction with the outdoor
temperature and the work planning of people.

Such an analysis permits us to propose an optimum pre-
diction concerning the daily energy consumed in buildings by



Table IV. NUMBER OF TRAINING DATA (ND), MAXIMAL ENERGY CONSUMPTION (MAXEC), NUMBER OF CLUSTERS (NC), AVERAGE SUCCESS IN
CLASSIFICATION (µSC ), DEVIATION OF SUCCESS IN CLASSIFICATION (δSC ), AVERAGE ESTIMATION ERROR (µEE ) AND DEVIATION OF ESTIMATION

ERROR (δEE ) FOR EACH BUILDING MODEL

Models ND maxEC (kW) NC µSC (%) δSC (%) µEE (kW) δEE (kW)
Constant occupancy 490 195.4 8 95.7 2.3 8.8 3.0
Variable occupancy 735 186.8 5 98.5 1.6 20.5 4.3

integrating the most relevant input data involved in energy
consumption. Our approach is based on using the sensed
data measured by sensors installed in the building to generate
the predictive model that estimates the energy consumption
for thermal comfort, considering the behavior patterns of the
parameters identified as main contributors.

This models are validated by debiopharm and a new project
created enable the implementation. The first step is the control
of temperature when we don’t have a people in the building.
Furthermore, we add the humidity and pressure outdoor in the
input data. Once energy usage profiles have been extracted,
we can design and implement actions to save energy, for
instance, proposing strategies to adjust the operation time and
configuration of the involved appliances or devices, selecting
the optimal distribution of energy to maximize the use of
alternative energies, etc. In order to provide the good strategies,
it’s essential to provide the electricity prices information to
adapt its consumption.

ACKNOWLEDGMENT

This research was undertaken as part of the Adaptive IES
Project and has been funded by The Ark Energy foundation
(Project No. 712-07). We would like to thank the contributions
from the Debiopharm partners: Vincent Griffoul and Lionel
LeRoux.

REFERENCES

[1] D. Petersen, J. Steele, and J. Wilkerson, “Wattbot: a residential elec-
tricity monitoring and feedback system,” in Proceedings of the 27th
international conference extended abstracts on Human factors in com-
puting systems. ACM, 2009, pp. 2847–2852.

[2] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng,
“Occupancy-driven energy management for smart building automation,”
in Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building. ACM, 2010, pp. 1–6.

[3] R. Lindberg, A. Binamu, and M. Teikari, “Five-year data of measured
weather, energy consumption, and time-dependent temperature varia-
tions within different exterior wall structures,” Energy and Buildings,
vol. 36, no. 6, pp. 495–501, 2004.

[4] K. Voss, I. Sartori, A. Napolitano, S. Geier, H. Gonçalves, M. Hall,
P. Heiselberg, J. Widén, J. A. Candanedo, E. Musall et al., “Load
matching and grid interaction of net zero energy buildings,” 2010.

[5] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 1, pp. 81–93, 2014.

[6] M. R. Berthold, C. Borgelt, F. Höppner, and F. Klawonn, Guide to
intelligent data analysis. Springer, 2012.

[7] L. Perez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy
consumption information,” Energy and Buildings, vol. 40, no. 3, pp.
394–398, 2008.

[8] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering
using machine learning techniques,” in Passive and Active Network
Measurement. Springer, 2004, pp. 205–214.

[9] F. Luna, C. Estébanez, C. León, J. M. Chaves-González, A. J. Nebro,
R. Aler, C. Segura, M. A. Vega-Rodríguez, E. Alba, J. M. Valls et al.,
“Optimization algorithms for large-scale real-world instances of the
frequency assignment problem,” Soft Computing, vol. 15, no. 5, pp.
975–990, 2011.

[10] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the
authors),” The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[11] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] H. Simon, Neural networks: a comprehensive foundation. Prentice
Hall, 1999.


