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Abstract. Currently, increasingly large medical imaging data sets be-
come available for research and are analysed by a range of algorithms
segmenting anatomical structures automatically and interactively. While
they provide segmentations on a much larger scale than possible to
achieve with expert annotators, they are typically less accurate than
experts. We present and compare approaches to estimate segmentations
on large imaging data sets based on a small number of expert annotated
examples, and algorithmic segmentations on a much larger data set. Re-
sults demonstrate that combining algorithmic segmentations is reliably
outperforming the average individual algorithm. Furthermore, injecting
organ specific reliability assessments of algorithms based on expert anno-
tations improves accuracy compared to standard label fusion algorithms.
The proposed methods are particularly relevant in putting the results of
large image analysis algorithm benchmarks to long-term use.
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1 Introduction

Annotations are an important basis when developing algorithms that segment
anatomical structures in medical imaging data. For relatively small sets, they
can be manually generated by experts, and serve as means for the training, and
evaluation of algorithms. If multiple annotations are available for the same tar-
get, label fusion algorithms such as STAPLE [26] provide improved estimates for
true segmentations. Recently, increasingly large data sets have become available



to the research community [11]. Such datasets are often part of challenges, where
a large number of state of the art algorithms are applied to localize or segment
anatomical structures. In this paper we propose and compare approaches to es-
timate true segmentations on large medical imaging data, if expert annotations
are available for only a small sub-set and less reliable algorithmic annotations
are available for all data.

Label fusion approaches in medical image segmentation aim at finding the true
(hidden) segmentation of a structure in an image by estimating a consensus
of multiple segmentation estimates. Independent noise in different annotations
causes the consensus to correct this variability and yield significantly more accu-
rate segmentations than those derived from a single source [18, 22]. For instance,
magjority voting assigns the label with most votes among annotators to each
voxel [8,15,16]. In the context of multi-atlas label fusion additional weighting
or weighted voting based on image similarity can further improve results [2].
Further improvement can be gained by fusing labels of a well chosen sub-set of
atlases [1] Fusing multiple atlas segmentations significantly outperforms single
atlas segmentations [21]. One downside of weighting schemes, is that image sim-
ilarity is a limited predictor of registration accuracy [2, 18]. Therefore, a range of
approaches takes multiple annotations into account to assess consistency as a ba-
sis for estimating their reliability. Label fusion via Simultaneous Truth And Per-
formance Level Estimation (STAPLE) [26] estimates performances and weights
of contributing segmentations based on an expectation maximization. STAPLE
simultaneously computes performance estimates based on sensitivity and speci-
ficity of contributing segmentations during maximization and establishes an es-
timate of the hidden ground truth segmentation, given performance estimates
in the expectation step [26]. It outperforms majority voting, and competes with
weighted voting approaches [1]. A Selective and Iterative Method for Perfor-
mance Level Estimation (SIMPLE) proposed in [18] is another iterative label
fusion algorithm. Similar to STAPLE it simultaneously computes an estimate of
the hidden true segmentation and estimates performances of each contributing
segmentation. SIMPLE additionally discards poorly performing segmentations
during the fusion process and computes segmentation performances based on a
spatial overlap measure of involved segmentations to the current estimate of the
hidden ground true segmentation. In case of fusing a small number of expert
annotations SIMPLE and STAPLE are reported to perform equally [18].

While these insights are important, existing approaches assume that we face
a set of annotators with initially equal competency estimates. In this paper we
extend these approaches to cases, where we have a small set of high-quality, or
’expert’ annotations (gold corpus), and a large set of algorithmic and possibly
less accurate annotations. We show how to use this for estimating segmentations
of anatomical structures on a large data set, resulting in a so-called silver corpus.

We calculate a silver corpus annotation of anatomical structures in medical
images by fusing gold corpus annotations from a limited number of templates by
multi-atlas label fusion, and additional algorithmic estimates of the annotations.



MRT1lcefs

Fig. 1. Illustrations of generated silver corpus annotations of one volume in each modal-
ity. Volumes and annotations will be publicly available for the research community.

We estimate the reliability of each algorithm and corresponding weights based
on gold corpus annotations on a limited number of cases.

We evaluate different strategies of fusing algorithmic segmentations, and es-
timate their reliability either by consensus, or by comparison across the an-
notation sets (gold corpus and algorithmic). Finally we demonstrate that the
proposed approach consistently outperforms the average algorithm. Injecting re-
liability estimates further improves accuracy. We detail the benefit of specific
fusion strategies, and provide a comprehensive evaluation of all approaches on
20 anatomical structures in 40 volumes of four different modalities.

We finally apply the best performing fusion method to 264 cases of the eval-
uated modalities that were part of the VISCERAL challenges [19]. We make
the resulting silver corpus that contains 4323 annotated anatomical structures
available for the research community. Visualizations of generated silver corpus
annotations of one volume of each evaluated modality are shown in Figure 1.

2 Method

We start with a formal definition of our problem setting. Then, we explain the
algorithm for silver corpus label fusion from expert annotations on a small set of
cases, and multiple algorithmic annotations for each case. To facilitate reading
we explain the segmentation of one anatomical structure in one target image
of the silver corpus. This generalizes to arbitrary structures since organs, and
target images are treated independently in the proposed approach.

2.1 Problem Setting

Given a segmentation gold corpus as the set of N expert annotated atlases 4 =
(I1,...,In;Lq,...,Ly) where an atlas (I,,,L,,) is defined as a tuple, containing



image I,, and binary label image (annotation) L,. We aim to compute a silver
standard annotation L/. for each organ in a target image (image or volume)
I by fusing data that is typically available during benchmarks or competitions.
Benchmark data addresses the scenario where the gold corpus @ is complemented
by a set of P automatic segmentation estimates P = <f11T, . f;;) obtained
by algorithms that are applied to target image Ip. Each binary label image
IA.F} holds the segmentation estimate of algorithm p in target image Iy. The
atlas annotations are non-linearly mapped to Iy using image registration. We
compute transformations 7T, (x) so that Ip(x) ~ I,(T,(x)) and transfer the
corresponding annotations L,, towards the target volume, by applying the same
transformation Ly, (x) = Ly (T}, (x)). Our goal is to compute a segmentation silver
corpus by introducing a label fusion approach taking both, gold corpus @ as well
as algorithmic label estimates P into account.

2.2 Atlas Registration and Selection

We first map atlas annotations L,, to the target image in a two step procedure.
Inspired by [1] we first evaluate the Normalized Mutual Information (NMI) for
each pair of an atlas image I,, and the target image I [24].

After ranking all atlases based on their NMI to Iy, the framework selects
the set of top ranked J atlases and computes segmentation estimates of the
desired structure in I for each selected atlas by a two step registration process:
1. Registration: A non-linear alignment between I and each atlas image I,
is established (for details see Section 3), resulting in a transformation T, that
maps It to I, so that Ir(z) ~ L,(7,(z)). 2. Label propagation: The computed
transformation is used to compute a segmentation estimation of atlas n in the
target image, denoted as Ly (x) = Ly, (T (z)). We denote the set of .J atlas based
labelings of the target image Iy as A = (Lq,...,Ly).

2.3 Computing Weights of Segmentation Estimates

The previous steps result in two sets of labelings for the target image: mapped
gold corpus atlas annotations 4 and annotations by algorithms P. Inspired by
the work in [2], we perform weighted label fusion to generate L. In the following
we explain how to determine the weights of individual segmentations.

Obtaining Atlas Weights We derive atlas segmentation performance estimates
by leave-one-out cross validation on the test set. We propagate each annota-
tion L, to all remaining atlases based on non-rigid pair-wise registration of the
corresponding images. We evaluate the overlap of propagated annotations by
comparing them to the native expert annotation in the atlas image using the
Dice coefficient [3]. The weight v, of an atlas annotator L, is the average Dice
[3] coefficient of its segmentations propagated to all other atlas images, and the
corresponding expert annotation. This results in weights v = vy,...vy.



Obtaining Algorithm Weights To derive performance estimates w = wq, ... wp
of the algorithms, each algorithm is applied to all test set atlas volumes. Similar
to atlas weights, the weights are calculated by averaging the Dice coefficents [3]
of computed segmentations and atlas annotations.

2.4 Fusion

As final step we fuse propagated atlas segmentations A and algorithmic segmen-
tations P to the resulting silver corpus annotation L/, for the targeted structure.
In the following we explain four label fusion approaches and compare them in the
experiment section. After calculating weights of atlas- and algorithm annotations
individually, we treat them equally during fusion, we denote £ = (Ly,..., L)
as a set of M binary label images and u = uy, .. .uys as a vector of corresponding
segmentation weights. L/-(x) is the final segmentation estimate in Ir.

1. Majority Vote (MV): The computed segmentation performance estimates
are not considered during fusion and all contributing segmentations are
weighted equally. Each voxel x of L/ is assigned with the label that is most
frequent in corresponding voxels of all contributing segmentation estimates:

L(CY Lix) >

M= 0 (o L) <

(1)
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2. Organ Level Weighted Voting: L/ is derived by a majority vote where
the impact of each L; € L is weighted by wu;. Since weights are determined
for each organ independently, we call this algorithm Organ Level Weighted
Voting (OLWV).

L (SM L) ) > 2
0, (Zjﬁl Li(x)-ui) <2

3. STAPLE: For evaluation in this work we use the binary version of the
STAPLE algorithm [26]. STAPLE takes a set of binary label images £ as
input and computes an estimation of the hidden ground truth L’. based
on expectation maximization [26]. We refer to STAPLE segmentations as
L), = STAPLE(L).

4. SIMPLE: An implementation of SIMPLE as proposed in [18] is used in
our work. Besides £, the algorithm is parametrized by k and «, where
« influences the performance level that contributing segmentations must
exceed to remain in the set of contributing segmentation and k defines
the number of iterations in which segmentations are kept for fusion even
though the performance threshold is not reached. Optional, SIMPLE takes
initial segmentation weights into account. We refer to SIMPLE segmen-
tations computed without initialization as L. = SIMPLE(L, k,«) and as
L/ = SIMPLE*(L, k, o, u) when pre-computed segmentation weights u are
used for initialization.

Ly (x) = (2)



3 Experiments

Data and Validation We evaluate the proposed framework and compare fu-
sion methods using a set of 120 atlases with manual expert reference annota-
tions. They cover four modalities (30 T1-weighted magnetic resonance (MRT1)
images, 30 T1-weighted contrast enhanced fat saturated magnetic resonance im-
ages (MRTl1cefs), 30 computed tomography scans (CT) and 30 contrast en-
hanced computed tomography (CTce) scans) with up to 20 annotated struc-
tures in each volume” MRT1 volumes have a field-of view of the whole hu-
man body (voxels: 1.1 — 1.3 x 1.1 — 1.3 x 6 — Tmm), MRT1cefs volumes of the
abdomen (1.2 — 1.3 x 1.2 — 1.3 x 3mm), CT scans of the whole human body
(0.8 =0.9 x 0.8 — 0.9 x 1.5mm) and CTce scans include the chest and the ab-
domen (0.6 — 0.7 x 0.6 — 0.7 x 1.2 — 1.5mm).

Algorithmic segmentations are available from participants of the VISCERAL
Anatomy 2 & 3 challenges®, where 9 groups contributed algorithms for structures
in CT and CTce and 2 in MRT1 and MRT1cefs volumes [6,11]. Each partici-
pant has been able to submit up to 5 different parameter configurations, result-
ing in 20 independent algorithmic estimates in CT and CTce and 2 in MRT1
and MRT1cefs volumes. Most algorithms incorporate atlas based segmentation
approaches [5,9,10,12,13], but are also based on shape and appearance mod-
elling [7,20,25], anatomy based reasoning [4,23] or use graph cuts and spatial
relations [14]. All methods are trained on 20 atlases of each modality which are
excluded from the test set [6,11].

Since only P are independent for each target volume, but a sub-set of atlases
has to be used for generating A and for estimating the performance of each
algorithmic annotator, we performed leave-one-out cross validation on 10 atlases
of each modality resulting in a test set of 40 volumes. Each atlas of the test set
was selected once as target image and held out of the source atlas set and from
the performance estimation process. Accuracy for all structures is reported as
the Dice between segmentation estimate and gold corpus annotation [3].

Registration Annotations are propagated from atlases to target images based
on NMI driven multiresolution affine- and non-rigid registration. We use the
NiftyReg toolbox?, with a CUDA based implementation for affine alignment
and B-spline based non-rigid registration. For CTce volumes a spline grid with
7 mm, for CT with 9 mm, for MRT1cefs with 9 mm and for MRT1 a grid with
7 mm spacing is applied.

" Structures and RadlexIDs: r./1. lungs - RID 1302/1326, liver 58, r./l. kidneys
29662/29663, gallbladder 187, trachea 1247, aorta 480, first lumbar vertebra 29193,
r./l. adrenal gland 30324/30325, r./l. psoas major 32248/32249, muscle body
of r./l. rectus abdominis 40357/40358, pancreas 170, spleen 86, sternum 2473,
urinary bladder 237 and thyroid gland 7578. For Radlex terminology refer to
http://www.radlex.org/.

8 Organized by the EU FP7 funded project VISCERAL: http://www.visceral.eu

9 http://www.nitrc.org/projects/niftyreg/
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Fig. 2. Segmentation performances of MV, MV - random selection, OLVW - NMI
weights and OLVW - performance weights averaged over all structures of each modal-
itly evaluated for different numbers (x-axis) of selected atlases. OLVW - performance
weights yields best results in all four modalities.

Fusion Approaches Method identifiers (MV, OLWYV, STAPLE, SIMPLE)
and input parameters follow those in Section 2. Depending on the input data,
the method identifier is appended by letter A (atlases) if £ = A, by P (partic-
ipating algorithms) if £ = P and AP if £ = (A, P) (atlases and algorithms).
Corresponding weights are calculated following Section 2.3. For SIMPLE, the
number of iterations in which no segmentation is discarded is k = 3, similar
to [18] and we set o = 1.25 [17].

4 Results

Atlas Selection and Weighting First, we evaluate the effect of different num-
bers of weighted atlases without using algorithmic segmentations. Figure 2 com-
pares majority voting of pre-registration selected atlases (MV'), majority voting
of randomly selected atlases (MV - random selection), OLVW with weights de-
rived by NMI of the transformed atlas image and the target image (OLVW -
NMI weights) and OLVW with performance weights calculated according to Sec-
tion 2.3 (OLVW - performance weights). We show the Dice coefficients averaged
over all structures for each modality and increasing numbers of atlases. While
all methods yield comparable results on CT volumes, differences become visible
in CTce and especially in MRT1 and MRT1cefs volumes. Results show that MV
slightly outperforms MV - random selection as well as OLWV - NMI weights.
Best results in all modalities are obtained by a weighted vote that incorporates
performances weights (OLWYV - performance weights). Results furthermore show
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Fig. 3. Average segmentation performances of different fusion approaches that incor-
porate propagated atlases and algorithmic segmentation estimates on all modalities
evaluated. SIMPLE segmentation yields in the best overall segmentation performances.
Injecting reliability estimates (SIMPLE*) results in similar performances compared to
SIMPLE without initial segmentation weights.

an initial performance increase with an increasing amount of considered atlases
followed by a constant (CT, CTce) or even decreasing segmentation performance
when considering many poor atlases (MRT1, MRT1cefs).

Comparing Label Fusion Methods Integrating Atlases and Algorithms
Figure 3 compares different label fusion approaches (MV, OLWYV, STAPLE and
SIMPLE) and the impact of performance based weights on the SIMPLE ap-
proach (indicated by * in the legend) on test set segmentation accuracy. Here,
all methods take atlases and segmentations of participants into account. Based
on the results shown in Figure 2, we select the top 16 ranked atlases for CT, 20
for CTce, 14 for MRT1 and 8 for MRT1cefs volumes. The y-axis depicts aver-
age Dice [3] coefficients, the x-axis identifies anatomical structures, ordered by
accuracy of the best performing approach.

All methods perform comparably for structures with high overall segmenta-
tion accuracy (e.g., the lungs in CT, CTce and MRT1). The benefit of weighting
becomes visible for structures with lower overall segmentation accuracy, and is
highest in MRT1 and MRT1cefs. Here, OLWV AP outperforms MV AP in the
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Fig. 4. Average accuracies of single algorithmic segmentations, atlases and different fu-
sion approaches. Fusing segmentation estimates of both, atlases and algorithms (SIM-
PLE* AP) outperforms segmentations obtained by fusing estimates of one of both
components (SIMPLE* A, SIMPLE* P).

majority of tested structures. That is, taking the split of annotators into experts
and algorithms into account does improve accuracy. Fusing segmentations with
STAPLE AP and SIMPLE AP improves segmentation accuracy for all inves-
tigated structures. Excluding poorly performing segmentations (SIMPLE AP)
results in higher segmentation accuracy, again especially in structures with low
overall segmentation quality. Using reliability estimates of each contributing seg-
mentation to initialize SIMPLE (SIMPLE* AP) and SIMPLE without applying
initial weights (SIMPLE AP) reach similar segmentation performances, which
is plausible since SIMPLE is reported to be independent to initial segmentation
weights [18]. Small performance gains are observed in some structures of MRT1
and MRT1cefs volumes.

Multiple Atlases vs. Multiple Algorithms Figure 4 compares average seg-
mentation accuracies of individual atlases or individual algorithms with segmen-
tations obtained by fusing atlases (SIMPLE* A), algorithms (SIMPLE* P) or
both (SIMPLE* AP). As expected, all fusion approaches consistently outper-
form individual segmentations. Using atlases and algorithms jointly improves
segmentation accuracies in the majority of structures compared to fusing algo-
rithms or atlases only. Figure 5 illustrates the effect of fusing atlases and al-
gorithms on liver segmentations. True positive, false negative and false positive
segmented voxels of two algorithms, two propagated atlases and the resulting
fused segmentation are shown in a CTce and a MRT1cefs volume.

The Resulting Silver Corpus Finally we apply the best performing fusion
method SIMPLE* AP to 264 additional volumes of the modalities (62 CT, 65
CTce, 66 MRT1, 71 MRT1cefs) for which segmentation estimates could be gen-
erated using the algorithms submitted to VISCERAL Anatomy 2 & 3, resulting



in the VISCERAL Anatomy Silver Corpus that consists a set of 4323 seg-
mentations of anatomical structures which will be available as a resource for the
research community at www.visceral.eu.

For reference, Table 1 lists the number of computed segmentations (#) of all
target structures in each modality as well as average segmentation performances
(1) and corresponding standard deviations (o) which serve as structure and
modality specific segmentation performance estimates of generated silver corpus
annotations.

5 Conclusion

Algorithmic segmentation of anatomical structures is essential for computer
aided diagnosis, since large scale manual annotation is infeasible. Benchmarks
that evaluate multiple algorithms on medical imaging data contribute critically
to assessing their accuracy, and thereby advancing method research. At the same
time the variety and number of these algorithms can be leveraged to create large
scale silver corpora of imaging data annotated by some sort of consensus of
these contributions. Here, we propose and evaluate a framework for creating sil-
ver corpus annotations of large scale data. We first apply a number of different
segmentation algorithms that were entries to an anatomy segmentation challenge
to segment the data. Then, we fuse labels transferred from manually annotated
atlases and the labels obtained by the algorithmic segmentations. The results
demonstrate that adding algorithmic estimators improves accuracy compared to
baseline segmentations obtained by mere expert atlas fusion. Furthermore, in-
forming the label fusion by weighting algorithmic and atlas segmentations based
on their accuracy in comparison to expert annotations improves accuracy over
standard label fusion techniques. The accuracy gained by fusion is highest for
anatomical structures on which algorithms perform poorly. Analogously, even
though fusion of algorithmic segmentations is already beneficial across the en-
tire range of organs, adding atlases furthermore improves accuracy for structures
where algorithms have low accuracy. We applied the best performing method,
SIMPLE* AP (fusing atlases and algorithmic segmentations, initialized with
performance estimate weights), to a dataset of 264 volumes of four modalities
(CT, CTce, MRT1, MRT1cefs). This resulted in a set of 4323 silver corpus anno-
tations, which will be available for the research community at www.visceral.eu.
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groups contributing to this work by participating in the VISCERAL Anatomy
2 & 3 benchmarks [4,5,7,9,10,12-14, 20, 23, 25].



CTce

MRT1cefs

Algorithms

Propagated atlases

S,

Fusion

@False positives

@True positives @False negatives
Fig. 5. Consensus plots of two algorithmic segmentation estimates, two mapped atlases
and the resulting fusion of two liver segmentations obtained by SIMPLE* AP.

Table 1. Segmentation performances (u, o) obtained by SIMPLE* AP, evaluated on
10 annotated test set volumes (i.e. which were not included in algorithm training) per
modality and number of silver corpus annotations (#) computed on additional volumes

that will be available as a resource for the research community at www.visceral.eu.

CcT CTce MRT1 MRT1cefs
Radlex ID |Name # 4 o | # Woo | # opu ol|l# o4 oo
58 liver 59 0.930.01| 63 0.940.01| 66 0.830.07( 71 0.90 0.03
86 spleen 55 0.89 0.06| 63 0.890.07| 65 0.740.11| 71 0.79 0.18
170 pancreas 57 0.430.19| 60 0.470.18] 63 0.210.21| 71 0.46 0.13
187 gallbladder 40 0.240.19| 49 0.54 0.15] 46 0.050.05| 61 0.13 0.20
237 urinary bladder 58 0.76 0.15| 64 0.86 0.06] 59 0.66 0.28| 70 0.45 0.25
480 aorta 58 0.790.04| 63 0.820.05| 65 0.730.07( 71 0.68 0.02
1247 trachea 57 0.930.02| 62 0.930.02] 63 0.78 0.10] - - -
1302 r. lung 60 0.980.01f 64 0.970.01|] 66 0.920.02] - - -
1326 L. lung 61 0.970.01f 63 0.970.01| 66 0.910.03] - - -
2473 sternum 55 0.800.04| 63 0.830.07| 64 0.600.00] - - -
7578 thyroid gland 57 0.570.10| 62 0.520.13] 64 0.250.15 - - -
29193 first lumbar vertebra| 57 0.67 0.36| 63 0.68 0.34| 58 0.46 0.25| 71 0.23 0.12
29662 r. kidneys 57 0.870.12| 63 0.940.01| 65 0.810.11| 71 0.86 0.18
29663 1. kidneys 58 0.90 0.03| 63 0.930.02| 64 0.84 0.06| 71 0.85 0.20
30324 r. adrenal gland 54 0.320.20| 56 0.350.14| 50 0.38 0.14| 60 0.23 0.11
30325 l. adrenal gland 54 0.36 0.19| 53 0.350.17| 41 0.17 0.22| 49 0.21 0.12
32248 . psoas major 58 0.84 0.02| 63 0.860.02| 65 0.790.06| 71 0.73 0.12
32249 1. psoas major 56 0.84 0.02| 63 0.850.05| 65 0.820.06| 71 0.80 0.05
40357 r. rectus abdominis 56 0.60 0.21| 63 0.690.16| - - - - - -
40358 1. rectus abdominis 55 0.64 0.14| 64 0.630.17| - - - - - -
Z 1122 1227 1095 879
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