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Analyzing Medical Image Search Behaviour: Semantics and Prediction of Query Results 
  
  
Abstract.  Log files of information retrieval systems that record user behavior have been used 
to improve the outcomes of retrieval systems, understand user behavior and predict events.  In 
this article, a log file of the ARRS GoldMiner search engine containing 222,005 consecutive 
queries is analyzed. Time stamps are available for each query, as well as masked IP 
addresses, which enables to identify queries from the same person.  This article describes the 
ways in which physicians (or Internet searchers interested in medical images) search and 
proposes potential improvements by suggesting query modifications. For example, many 
queries contain only few terms and therefore are not specific; others contain spelling mistakes 
or non-medical terms that likely lead to poor or empty results.  One of the goals of this report is 
to predict the number of results a query will have, since such a model allows search engines to 
automatically propose query modifications in order to avoid result lists that are empty or too 
large. This prediction is made based on characteristics of the query terms themselves. 
Prediction of empty results has an accuracy above 88%, and thus can be used to automatically 
modify the query to avoid empty result sets for a user.  The semantic analysis and data of 
reformulations done by users in the past can aid the development of better search systems, 
particularly to improve results for novice users.  Therefore, this paper gives important ideas to 
better understand how people search and how to use this knowledge to improve the 
performance of specialized medical search engines.  
  
Keywords Image Retrieval � Human-Computer Interaction � Machine Learning � Statistic 
Analysis � Information Storage and Retrieval � Medical image search � Log file analysis 
  
1. Introduction 
  
Medical imaging studies have increased significantly in both quantity and complexity over the 
past 30 years [1]. Images are an essential part of medical diagnosis and treatment planning, 
and many tools have been created to search and interpret images, as well as to give medical 
doctors decision support [2,3]. Among medical specialities, radiologists are at the forefront of 
analyzing images, searching for specific patterns in them, and describing them in reports that 
form a basis for further decision making. In general, physicians increasingly use online 
resources to search for information. Radiologists commonly use standard search engines to 
look for image information for medical images [4]. Specialized radiology search engines such as 
ARRS GoldMiner1, Yottalook2 or Shambala3 allow users to search for images in the medical 
literature using text queries, or in some cases, image examples to search for visual similarity. 
Research has shown that text search, filters for imaging modality, and image and region-of-
interest search are requested by radiologists [5].  
  
 
                                                
1 http://goldminer.arrs.org 
2 http://www.yottalook.com 
3 http://shambala.khresmoi.eu 

Page 1 of 27 Journal of Digital Imaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

In contrast to other approaches to study users’ web-site usage, search log analysis is an 
unobtrusive method that shows significant advantages compared to surveys and laboratory 
studies in scale, power, scope and location [6]. Despite limitations such as possibly imprecise 
user representation, less versatility, less richness, and a loose link to concepts supposed to be 
measured [6], search log analysis has been used in the biomedical domain to examine textual 
and visual retrieval systems [7]. 
 
Search logs of general search engines have been used to predict flu outbreaks and to analyze 
medication use [8]. They also have been used to analyze image search behaviour [9,10].  
Analysis of MedLine search behaviour in the medical literature was conducted based on log files 
[11,12]. Closest to the presented work are the analyses of Tsikrika et al. [7] and Rubin et al. [13] 
that both used ARRS GoldMiner log files, but a much smaller set of queries (25,000 and 30,000 
respectively, so around 10%). None of these systems performs user profiling, which would be 
possible with registered users of a search system. Detecting user profiles from log files was 
attempted in [14] but we do not try to separate queries into several user categories for ARRS 
GoldMiner as the technologies do not seem fully stable and our objective is to rather predict 
problematic queries for any user group. 
  
Tsikrika et al. [7] analyzed 25,000 ARRS GoldMiner queries to investigate the process of query 
formulation and query modification in order to identify medical professionals' information needs 
with the aim to improve the effectiveness of the search support of such systems. This article 
extends the previous work using a dataset of 222,005 search queries with timestamp 
information. Timestamp information was not available in the previous study and was used to 
create user sessions with specific time limitations. Additionally, the key contribution of this paper 
lies in the use of machine learning algorithms to predict a query’s success and the number of 
results for a specific query. 
  
Similarly, Rubin et al. [13] analyzed 30,000 queries to ARRS GoldMiner and Yottalook, and 
implemented an algorithm for mapping search terms to RadLex4, an ontology consisting of 
radiology terms, with the goal of determining what radiologists search for on the Web. As their 
research showed, giving the queries a RadLex semantic context improves the robustness of the 
analysis. Therefore, this paper also includes mapping to RadLex terms and axes, using an 
automatic text categorization system [15] that gives a robust mapping. This system does the 
mapping in three different ways, which allows to differentiate a query that is itself a RadLex term 
from one that includes several RadLex terms, among other cases.  
  
The first part of the paper builds on the past work to construct a detailed analysis of a larger log 
file of the ARRS GoldMiner search system, while also aiming to improve technical aspects of 
the methodology. The second part of the paper uses machine learning to build a predictive 
model that is able to determine the range of the number of query results. ARRS GoldMiner 
retrieves all documents containing all query terms (with “AND” connection by default); 
additionally, if the term is in a vocabulary, the search is also done using the corresponding 

                                                
4 http://www.radlex.org 
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concept (MeSH, SNOMED, etc.). Therefore, it is possible to have queries with too many results 
and others with no results. Machine learning techniques, though widely used when working with 
search log files from search engines [8], have not been applied to analyze ARRS GoldMiner nor 
radiologists' image search behaviour [4]. 
  
The results presented in this paper provide a better understanding of the way in which 
physicians search for information. It also proposes two algorithms to predict whether a query will 
have at least one result and in what range the number of query results will be, respectively. Both 
algorithms have a very high accuracy and use very simple data as input, two characteristics that 
make them a viable alternative to be implemented in search engines as a criterion to determine 
when a query modification should be suggested as the computation is extremely fast. For 
example, if the algorithm predicts there will be too many results, the search engine could 
suggest the user to narrow the search; similarly, if the prediction forecasts no results, the search 
engine could suggest alternative queries that return results. To propose alternative queries the 
analysis of what other users have done in the past in terms of query reformulations, such as the 
one presented on this paper, can be extremely useful. For example, modifications that have 
been successful for other users in the past could work as a basis for suggestions made to new 
users. Such a recommendation system would potentially work better the more queries and 
query modifications it contains. 
  
This paper is organized as follows: Section 2 includes a description of the data, of the methods 
used to produce descriptive analysis and of the machine learning models. Section 3 presents 
the descriptive analysis of radiologists' search behaviour and the results of the predictive 
models. Finally, in Section 4 results are discussed and Section 5 contains the conclusions. 
  
2. Methods 
  
2.1 Data Source 
  
The examined query log was produced by the American Roentgen Ray Society (ARRS) 
GoldMiner medical image search engine [16], which currently provides access to more than 
485,000 selected images from peer-reviewed biomedical journals targeted mainly to clinical 
professionals. The images are indexed using the keywords of the caption, the imaging modality, 
the age and the gender of the patient, which are all automatically extracted from the text. 
  
The search procedure within ARRS GoldMiner always starts with a keyword search, with the 
possibility of filtering results at a later stage by gender, age groups, and modality. The results 
are returned as a set of pages, each consisting of a list of up to 10 results, or a display of up to 
40 image thumbnails. Each result contains the image thumbnail, the caption, the modality and a 
link to the article containing the image. The acquired log file contained 222,005 consecutive 
queries. Each log entry included a timestamp, a client identifier (encrypted IP address to 
preserve privacy), the query itself and the number of results found for that query. 
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Preprocessing of the query logs was done in the same way as Tsikrika et al. [7]: all queries 
were converted to lowercase, various special characters were removed, and medical imaging 
modalities were normalized (for example, "XR," "X-ray" and "xray" were mapped to a single 
term). Consecutive identical queries in the same session and with the same number of results 
were considered as a single query. Such entries occur when a searcher submits a query, then 
views a document, and returns to the search engine. The Web server typically logs this second 
visit with the identical user identification and query but with a new timestamp. Also, result page 
navigation can cause the same logging behaviour. The log also contained identical queries in 
the same session that yielded different result sets; these queries were kept because they could 
reflect the use of filters.  
  
2.2 Descriptive Analysis 
  
Understanding the user's behaviour is key to enhance information retrieval systems. The first 
part of this paper provides descriptive analysis of the data contained in the log files. 
 
Log analysis at session level can provide valuable information. A session is defined as a series 
of queries done by a single user within a small range of time where he/she attempts to fill a 
single information need [17]. As commonly applied, a session cut-off time of 30 minutes was 
defined [18]. This means that all consecutive queries within less than 30 minutes of inactivity to 
the previous query will be considered as a session. A query made later than the cut-off time to 
the previous query will be put into a new session. Query modification analysis is conducted 
within session boundaries and identifies the relationship between consecutive queries with three 
possible outcomes: query generalization, query specification and query reformulation. 
  
In order to put the queries into a semantic context, a mapping from queries to RadLex terms 
was applied. RadLex is a reference ontology for the radiology domain that currently contains 
more than 30,000 terms used mainly for standardized indexing and retrieval of radiology 
information resources. It was developed by the Radiological Society of North America (RSNA) in 
order to satisfy needs of software developers, system vendors and radiology users by adopting 
the best features of existing terminology systems, while producing new terms to fill critical gaps 
[19,20]. Standard lexicons such as RadLex can be used to solve data-mining problems that 
occur due to synonyms, negation and inheritance5; for example, all synonyms are mapped to 
the same RadLex term. This mapping was mainly done to determine which of the RadLex axes 
were most often represented in the queries, as well as to count the term frequency of the 
mapped RadLex terms. The mapping from queries to RadLex terms was achieved by using 
Ruch's system for automatic assignment of biomedical categories [15] using lexical similarity of 
terms. Each term that could be mapped to RadLex was classified into one of the following 15 
axes of RadLex: Imaging protocol, Report, Procedure, RadLex descriptor, Property, Anatomical 
entity, Imaging observation, Process, Imaging modality, Non-anatomical substance, RadLex 
non-anatomical set, Report component, Procedure step, Object and Clinical finding, which are 
the main RadLex axes. 

                                                
5 http://www.rsna.org/RadLex_in_Your_Practice.aspx 

Page 4 of 27Journal of Digital Imaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  
2.3 Predictive Models 
  
A machine learning approach was applied to build a system capable of predicting the number of 
results a query will have. Two different tasks were defined: predicting if a query will have no 
results and predicting the range of the number of results (0-10 results, 10-100 results, or more 
than 100 results). These three classes were chosen because fewer than 10 results could be 
considered a query with too few results and more than 100 could be considered a very broad 
query where no one would look at all results, whereas in between could be considered a 
desirable result set. 
  
Each query was represented by 18 attributes that were used to train the machine learning 
algorithms. The attributes were the following: 
  
RadLex mappings: As explained in section 2.2, queries were mapped to RadLex terms in order 
to place them in a semantic context. Four types of mappings were possible: exact (the whole 
query corresponds to a term in the RadLex ontology), all terms (all the terms in the query can be 
mapped to a RadLex concept), partial (at least one, but not all, the terms in the query are 
mapped to RadLex), none (no term in the query can be mapped to RadLex). The first RadLex-
related attribute is the type of mapping done. Given there are multiple types of mappings, each 
query can have between 0 and N RadLex mappings, N being the number of terms in the query. 
Therefore, 13 attributes were created, one for every RadLex axis present in the log files. These 
are binary attributes; every query is assigned a 0 or 1 in each of this variables, depending on 
whether the query was mapped to the axis or not. 
  
Number of tokens in query: Two attributes were created based on the number of tokens in the 
query: total number of tokens and number of tokens without stopwords. The query “tumor in 
lung", for example, has three tokens and two non-stopword tokens. 
  
Appearances of terms in log files:  A dictionary with all the words in the queries was created, 
and for each of them the total number of queries in which it appears was counted. Later, this 
information was used to build two attributes of the vector representation of each query: min 
logfile appearances and max logfile appearances. In the previous example, “tumor in lung", let 
us assume “tumor" appears 108 times, “in" appears 2000 times and “lung" appears 520 times. 
Then, for this query min appearances = 108 and max appearances = 2000. 
 
To prevent deceitful results due to unbalanced classes, the Synthetic Minority Over-Sampling 
Technique (SMOTE) [21] was used to balance the classes. Once this was done, random forests 
[22] was selected as machine learning algorithm after experiments with support vector 
machines [23], logistic regression [25], random forests [22] and other decision trees. The criteria 
used to compare them were based on correctly classified instances, kappa statistic [28], F-
measure [29] and the area under the receiver operating characteristic (ROC) curve [29]. 
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Finally, in order to analyze the impact of each attribute in the predictive model, providing 
understanding on which elements are relevant for prediction and which are not, an information 
gain attribute ranking [30] was applied to determine the importance of each attribute. 
  
3. Results 
  
This section describes the main outcomes of this article. In the first part, the descriptive analysis 
is presented. Then, the predictive models, their accuracy and other interesting metrics are 
exposed. 
  
3.1 Descriptive Analysis 
  
Terms and queries. A query corresponds to the exact text a user types into the search engine, 
whereas terms are extracted from the queries and might constitute the whole or part of a query. 
The total number of queries was reduced from 222,005 to 200,361 after preprocessing, with 
92,909 queries (46%) being distinct and 75,118 queries (37.4%) appearing only a single time. In 
comparison to these results the study in [7], working with 25,000 records, 63% of the queries 
appeared a single time; the difference between these two numbers shows there is a gain in 
information when working with a larger dataset.  
 
Each query was repeated on average twice, and 17,791 of the 200,361 queries (8.9%) occurred 
more than once. This shows that relatively few queries are repeated. The high average can be 
explained by the fact that the ten most frequently occurring queries represented approximately 
2% of all queries. Queries that occurred only once were extremely specific terms, minor spelling 
mistakes that did not occur frequently, or totally off-topic queries.  
 
Regarding the most frequently occurring terms, 33,903 (17%) of the queries contained at least 
one of the 10 most frequently occurring terms, and 91,589 (46%) contained one of the top 100 
terms, with “cyst" being the most frequent. Figure 1 shows the proportion of queries containing 
the most frequently occurring terms. Tables 1 and 2 show the most frequently occurring queries 
and terms, respectively. Results are very similar to [7] with 7 of the most frequent queries and 9 
of the most frequent terms occurring in both albeit with a slightly changing order and very 
different absolute numbers. 
  
The majority of the queries consisted of two terms, followed by queries with one term, and  then 
by those with three terms. The mean number of terms per query was 2.21; the median was 2. 
Among all queries, 182,004 (90.8%) consisted of three or fewer terms. In contrast, PubMed 
averages 3.54 terms per query [12], with a median of 3 terms per query; 80% of all queries have 
no more than 4 terms. Figure 2 shows the number of queries given the number of terms in it. 
Again, these results are very similar to results in [7]. 
  
[Here: Table 1 and Table 2] 
  
[Here: Figure 1 and Figure 2] 
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Sessions. In the log files, 103,029 user sessions were identified. Among these, 100,761 (97.8%) 
contain less than seven queries; 64,679 (62.7%) contain only one query, 17,379 (16.9%) have 
two queries and 8,453 (8%) have three queries. The longest session has 126 queries. 
  
Studying 97,315 query pairs of consecutive queries in sessions showed that, out of these, 
36,056 (37.1%) do not share any common terms and only 741 (0.76%) are identical (this is 
influenced by result filtering), making 61,259 (62.9%) of consecutive queries in a session share 
at least one common term. 
  
When analyzing the modifications done by a user in a session, 30,622 (31.4%) query pairs 
represent a query reformulation, followed by query generalization 16,757 (17.2%) and query 
specification 13,139 (13.5%). This confirms results obtained by Tsikrika et al. [7] and thus 
opposes the large majority of studies analyzing Web search engines logs, where reformulation 
is also the mostly frequently observed query modification type, but it is followed by specification 
and generalization [31]. Unlike Tsikrika et al. [7], available query time information allowed this 
study to limit the analysis to consecutive queries inside a search session, instead of all 
consecutive queries by the same client IP, leading to a much smaller number of query pairs 
relative to the search log size. According to our analysis, among the 91,375 subsequent queries 
in a session, the vast majority of queries 66,819 (73.1%) have a time span of less than one 
minute between two queries. 
  
RadLex mapping From the 200,361 queries left after preprocessing, 124,719 (62.2%) queries 
could be mapped to RadLex with one of the three techniques used: 36,372 (18.2%) queries 
where an exact match to a RadLex concept, while  76,928 (38.4%) could be partially mapped, 
and 11,419 (5.7%) had every term mapped to a concept in the ontology. The remaining 75,642 
(37.8%) queries could not be mapped to RadLex at all. The terms include non-medical terms 
spelling mistakes and terms that are too specific and not part of RadLex. In [13] 52% of the 
terms could be mapped to a smaller and older version of RadLex.  
  
The most common RadLex axis is clinical finding, with 79,721 queries being or containing a 
term that could be mapped to it, which represents 40% of all queries. The second most common 
axis is anatomical entity with 38,791 (19.3%) queries, having a huge gap with the third most 
common axis, RadLex descriptor, which is only present in 22,321 (1.1%) queries (for analyzing 
this percentages it is very important to remember every query can be mapped to more than one 
or to none RadLex terms). Figure 3 shows the relationship between number of queries and 
Radlex axes. In [13] the most frequent axis was anatomic location (52.3%) but RadLex was 
much smaller at the time and it is possible that this is responsible for part of these differences 
with findings only covering 10.7% of the queries in this older analysis. 
  
Among the queries, 99,060 (49.4%) are mapped to one single RadLex axis, while 23,477 
(11.7%) were mapped to two axes, 2,130 (1.1%) contained terms belonging to three different 
axes and 52 (0.03%) to four different axes. No query was mapped to more than four axes. A 
similar analysis was not done in the prior work of [13]. 
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At this point, an important question is: what axes do radiologists tend to combine for formulating 
their information needs? To answer this questions, the matrices in tables 3 and 46  show the 
number of times each pair of axes co-occurs. As expected, clinical findings and anatomical 
entities, being the most frequent axes, co-occur with others frequently. For example, the two of 
them co-occur in 11,787 queries, which correspond to 20% of the queries mapped to anatomical 
entity. Among the queries mapped to RadLex descriptor, 8,272 were also mapped to clinical 
findings, which corresponds to a 22%. The distribution of co-occurrences, however, is not only 
due to the frequency with which each axis appears; for imaging observation for example, clinical 
findings is only present in 1.9% of the queries containing it, while anatomical entity co-occur with 
it on 9.4% of its queries. 
  
[Here: Figure 3] 
  
[Here : Table 3] 
  
[Here: Table 4] 
  
3.2 Predictive Models 
 
Machine learning algorithms were used to perform two tasks: predicting the range in which the 
number of results will be and predicting whether a query will or will not have results. This is a 
classification task, for which we aim to obtain the highest possible accuracy. Several 
experiments were conducted to determine which algorithm to use. In a first set of experiments, 
logistic regression, support vector machines (sequential minimal optimization) and random 
forests were tested. A model to predict the number of query results using the features based on 
appearances of terms in log files and number of terms in query gave an accuracy of 50.19% for 
logistic regression, 49.99% for support vector machines and 81.32% for random forests. This 
accuracy corresponds to a 10-fold cross validation using the entire dataset. Note the accuracy 
of random forests is lower than the accuracy finally reported, since these experiments were 
conducted in the first phase of the project, without taking into account the features based on 
Radlex mapping. Nonetheless, after finding random forests to perform radically better than the 
other ones, which do not even outperform the baseline (49.99% if every query is assigned to the 
majority class), random forests were chosen as the prefered method for the task. The default 
Weka7 parameters for random forests allow the model to choose how deep each tree will be, 
and sets the number of trees to 10. Once the model had been trained using the whole set of 
features, experiments were conducted to determine if increasing the number of trees would 
improve the results. However, increasing the number of trees to 15 had a barely null impact on 
the accuracy (in the order of 10-3), and therefore the final choice of algorithm uses 10 trees. 

                                                
6 CF: clinical findings, O: object, AE: anatomical entity, NS: non-anatomical substance, RD: RadLex descriptor, PP: 
property, P:   procedure, PS: procedure step, IO: imaging observation, IM: imaging modality, RC: report 
component, R: report, PC: process. 
7 http://www.cs.waikato.ac.nz 
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The dataset used for building the model is unbalanced, which means it is not divided evenly 
among the classes. Therefore, after representing each query as a vector in �18, the data were 
preprocessed with SMOTE, in order to prevent unbalanced classes in the training data from 
altering the results, and used to train a predictive model. To assess the performance of the 
algorithm, a 10-fold cross validation was used. Promising results were obtained: an accuracy of 
85.19%, with an average ROC area of 0.95 and a Kappa Statistic of 0.77. More detailed 
information is included in table 5.  
  
[Here: Table 5]  
  
For predicting whether a query would have results, SMOTE was also used to balance the 
classes in the training data and the algorithm with the best performance was also random 
forests. Once again, increasing the number of trees gave almost null variation in accuracy. 
While the first one was a classification task between two classes, the second one classifies into 
three classes: 0-10 results, 10-100 results, and more than 100 results. The evaluation was also 
done using 10-fold cross validation and the performance is also remarkable: an accuracy of 
88.29%, with a ROC area of 0.95 and a Kappa Statistic of 0.76. More details about the 
performance can be seen in the table 6.  
  
[Here: Table 6] 
  
The downside of several machine learning algorithms, such as random forests, is the low 
interpretability; it is hard to understand which variables are important and which are not. In order 
to gain insight into the role variables play in the prediction, Information Gain Attribute Ranking 
was used. For a class C and an attribute A, being Ent the entropy, the information gain, I, is 
measured by 
  

I(C , A) = Ent (C) - Ent (C | A) 
  

Table 7 and 8 show the attribute's information gain for both tasks. 
  
Given the information gain is the difference between two entropies and for each task the entropy 
of the class is different, the numbers cannot be directly compared (for example, the fact that in 
both cases min logfile appearances is around 35 does not mean anything). However, 
conclusions can be drawn from the distribution of the values, as well as for values close to zero, 
since these ones mean the entropy of the class and the entropy of the class given the attribute 
is almost the same, meaning there is no information gain from this attribute. 
  
In both cases, min logfile appearances is by far the most relevant attribute. The type of RadLex 
mapping done to the query, the number of tokens (both with and without stopwords) and the 
max logfile appearances are important in both cases, although this last one is more relevant in 
the second task, which could be expected since this task also aims to predict when a query will 
have too many results. In both cases, RadLex axes do not provide much information. 
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[Here: Table 7 and Table 8] 
  
  
4. Discussion 
In this paper, image search behaviour of physicians and other web searchers form medical 
image information is analyzed based on the usage of log files, and predictive models to 
determine how many results a query will have are presented. The high accuracy of the 
predictive models, combined with the strong patterns identified in the descriptive analysis of 
users' behaviour, can be used to improve medical image search engines. The process of 
suggesting query modifications to users can be divided into two questions: when to suggest a 
modification and what to suggest. The findings of this paper can provide answers to both 
questions. 
  
Predicting the range of the number of query results, or predicting whether a query will have 
results or not (depending on the desired complexity), can be used as a criterion to determine 
when the engine should suggest to the user a query modification. The good performance of 
both classifiers make them suitable candidates for being used by search engines. As these 
parameters are extremely simple when removing the RadLex categories, they are also 
extremely fast to execture, much faster than executing a query; without optimization much less 
than half a second could be obtained. Adding this time to a query is invisible for the user and the 
user can then be informed on the modifications done and the reasons for it, allowing potentially 
to reuse the initial query.  
  
Once the system predicts that the query will probably not give a suitable number of results, it 
can make a suggestion. The information obtained from session analysis can be useful for this. 
Successful reformulations made by other users in the past can be used as suggestions for new 
users. This could be an appropriate approach whenever the query was made by another user in 
the past; however, as previously shown, less than 10% of the queries occur more than once, so 
many queries would not have a candidate for suggestion unless the log file grows massively 
and is available over a long period of time. Therefore, complementary methods have to be 
developed. The first element that can help improving a search engine is applying orthographic 
correction. This can reduce the number of queries with no results. As a second step, 
considering many searches give no results because they are too specific and others give too 
many results because they are too broad, it would be desirable to suggest a less or a more 
specific query, respectively. For the first case, a query in the log files which is contained in the 
current query and has obtained results could be a good candidate for a suggestion. For 
example, aortitis retroperitoneal fibrosis gives no results, so the search engine could propose 
the user to look for retroperitoneal fibrosis, which does have results. In the second case, the 
most common queries which contain the current query could be suggested as possible 
modifications. For example, if the initial input is fibrosis, the search engine could suggest a set 
of more specific queries for the user to choose from, such as cystic fibrosis, interstitial 
pulmonary fibrosis, retroperitoneal fibrosis. In this case initial results can be shown in addition to 
the recommended reformulations. 
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To further improve the results, an interesting task would be to identify off-topic queries, such as 
“happy new year'' and “San Valentine's'' that occurred in the log files. For these cases, there 
would be no suitable suggestion that improves the results, so the search engine could warn the 
user about this. 
  
As described, the main contribution of this paper on user search log file analysis is to propose a 
model for medical image search engines to suggest query modifications to the users based on 
automatic predictions based on single queries. However, the results can also be useful for other 
purposes. The frequency with which certain RadLex axes appear in searches and the way in 
which they are combined answers the question “what are physicians looking for?''. This gives 
valuable information to those proposing medical image retrieval tasks as benchmarks, as it is 
the case of CLEF eHealth [32] or ImageCLEF [33]. Knowing what radiologists or physicians in 
general search for is key to establishing useful tasks. 
  
In the machine learning portion of the research, the information gain measure provides valuable 
insight. The fact that the most relevant attribute is min logfile appearances suggests there is an 
“offer-demand" relation, since the number of times a query has been done is useful for 
predicting the number of results it will get. The same happens with max logfile appearances. 
The fact that RadLex axes are not useful for prediction is an unexpected result, since according 
to the hypothesis it was expected this would have impact on the number of results. However, 
RadLex mapping is still useful, since the type of mapping has a high information gain. This 
classification between the three types of mapping, part of Ruch's method [15], is particularly 
useful for this analysis. 
  
5. Conclusion 
  
This paper focuses on understanding how medical image search is performed and using this 
knowledge to improve specialized search engines. Data mining and machine learning 
techniques are applied to layout solid bases for a model of query modification suggestions. Two 
accurate predictive models are presented; the first one to determine when a query will have no 
results, and the second one to determine the range of the number of query results. In a search 
engine, giving no results is always a bad performance. Suggestions and modifications should be 
used to prevent this, and therefore predicting when it will happen is key to improving the system. 
The findings are promising, proving search log files can be used to train a system able to predict 
the level of success a search will have based on the query terms. Furthermore, a viable model 
that can be used by medical search engines for identifying problematic queries and modifying 
them to get better results is presented. 
  
Larger log files can even improve results, since this can help to create self-learning systems. 
Past session information can be a valuable asset for modification suggestions to users, a field in 
which medical search engines still have some road ahead. In standard search engines such as 
Google or Bing already queries are auto-completed while typing based on past queries and their 
frequencies. A similar possibility exists for medical image search if sufficiently large log files are 
available. Even dictionaries with standard spelling mistakes can be build based on such log 
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files. Mapping of queries to RadLex is reliable and also allows to avoid problems with synonyms 
as they are all mapped to a single term. Like this more can be found out on user intentions 
when querying, which can again be used to deliver better results than simply using key words. 
  
Within log files, there is potentially more information that could be used to good advantage, such 
as click information and time spent visiting links. For Goldminer we unfortunately did not have 
this information available but it is again a technique frequently used in web search log files that 
could be transferred to medical search. The strong patterns identified in users' behaviour 
corroborate this is a subject that should be studied further, aiming to improve image retrieval 
and search engines performance for medical search. Already the described analyses potentially 
allows to adapt the GoldMiner system much better to the user needs by only small modifications 
in its functionality. 
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Proportion of the queries containing the most frequently occurring terms.  
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The number of queries with a specific number of terms in the query.  
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Number of queries mapped to each RadLex axis.  
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 Query Frequency 

1  mega cisterna magna  820  

2   baastrup disease  798   

3   limbus vertebra  462   

4   toxic  428    

5  cystitis cystica  405   

6  buford complex  274  

7  thornwaldt cyst  274  

8  splenic hemangioma  254 

9  double duct sign  249   

10  cystitis glandularis  245 
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  Term Frequency 

1  cyst  6346 

2  mri  3536 

3  disease  3536 

4  ct  3504 

5  fracture  3366 

6  tumor  3233 

7  syndrome  2994 

8  liver  2486 

9  pulmonary  2424 

10  sign  2293 
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 CF O AE NS RD PP 

CF 79721 175 11787 150 8272 225  

O 175 1243 229 4 89 7 

AE 11787 229  38791  116 5217 166 

NS 150 4 116  1161  55 7  

RD  8272  89  5217  55  22321  18 

PP 225  7  166  7  189  109 

P  280  18  357  4  163  16  

PS  0  1  12  0  1  0  

IO  97  6  488  2  543  16  

IM 552  25  580  2  249  9  

RC  2  0  5  0  3  0  

R  4  0  1  0  0  0  

PC  1  1  5  0  0  0  
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  P   PS   IO   IM   RC   R   PC  

CF 280 0 97 552 2  4 1 

O 18 1 6 25 0 0 1 

AE 357 12 488 580 5 1 5 

NS  4  0  2  2  0  0  0 

RD 163  1  543  249  3  0  0 

PP 16  0  16  9  0  0  0 

P 1889  1  11  23  0  1  0 

PS 1  101  0  0  0  0  0 

IO 11  0  4044  12  0  0  0 

IM 23  0  12  2211  0  0  0 

RC 0  0  0  0 10  0  0 

R 1  0  0  0  0  16  0 

PC 0  0  0  0  0 0  12 
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 R1 R2 R3 Weighted Av. 

Precission  0.842 0.819 0.874 0.85 

 Recall  0.876 0.688 0.92 0.851 

F-measure  0.899 0.748 0.897 0.849 

ROC Area  0.955 0.92 0.971 0.953 
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 # Res>0 # Res<0 Weighted Av. 

Precision  0.899 0.865 0.884 

 Recall  0.899 0.864 0.884 

F-measure  0.899 0.865 0.884 

ROC Area  0.951 0.951 0.951 
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Variable Info.Gain 

min logfile appearances  0.35278316 

Type of RadLex mapping  0.10706495 

max logfile appearances  0.09828245 

number of tokens  0.07604782 

number of non-stopword tokens  0.07554565  

RadLex: clinical finding  0.02718913 

RadLex: non-anatomical substance  0.00130726  

RadLex: imaging observation  0.00129999  

RadLex: anatomical entity  0.00082734  

RadLex: procedure  0.00047458  

RadLex: property  0.00042359  

RadLex: RadLex descriptor  0.00035407  

RadLex: imaging modality  0.00033401  

RadLex: object  0.00026038  

RadLex: procedure step  0.00016858  

RadLex: process  0.00001056  

RadLex: report component  0.00000342  

RadLex: report  0.00000335  
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Variable Info. Gain 

minlogfileappearances 0.3625514 

maxlogfileappearances  0.1735592 

numberofnon-stopwordtokens  0.1498272  

numberoftokens   0.1497191 

TypeofRadLexmapping   0.1130494 

RadLex:clinicalfinding  0.0122519  

RadLex:RadLexdescriptor  0.0091736  

RadLex:imagingobservation 0.0018093  

RadLex:property  0.0016000 

RadLex:non-anatomicalsubstance  0.0013986  

RadLex:anatomicalentity 0.0013594  

RadLex:imagingmodality 0.0009119  

RadLex:object  0.0006390  

RadLex:procedure  0.0001619  

RadLex:procedurestep   0.0001126 

RadLex:report 0.0000384 

RadLex:process  0.0000363 

RadLex:reportcomponent  0.0000165  
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Table/Figure  Legend 

Table 1 The most frequent queries in the logfile. 
 

Table 2 The most common terms occurring in the queries. 
 

Table 3 Co-occurrence of RadLex axes in the queries (first 
part containing CF, O, AE, NS, RD, PP). 
 

Table 4 Co-occurrence of RadLex axes in the queries 
(second part containing P, PS, IO, IM, RC, R, PC). 
 

Table 5 Performance of Random Forests for predicting if a 
query will have results or not. 

Table 6 Results of Random Forests for predicting the 
range 
of the number of query results. R1 has less than 
ten results (including no results), R2 has between 
10 and 100 results, and R3 has more than 100 
results. 
 

Table 7 Relative influence of variables for predicting if a 
query will have no results, according to Info Gain 
Evaluation. 
 

Table 8 Relative influence of variables for predicting the 
range of the number of query results, according to 
Info Gain Evaluation. 
 
 

Figure 1 Proportion of the queries containing the most 
frequently occurring 
terms. 

Figure 2 The number of queries with a specific number of 
terms in the query. 

Figure 3 Number of queries mapped to each RadLex axis. 
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