Scalable approaches to integration in heterogeneous IoT and M2M scenarios

Alex C. Olivieri, Gianluca Rizzo
Institute of Information Systems, HES-SO Valais, Sierre, Switzerland
alex.olivieri@hevs.ch, gianluca.rizzo@hevs.ch

Abstract—The Internet of Things (IoT) opens new perspec-
tives for the Machine-To-Machine communications, as it brings
to settings with a large and heterogeneous set of devices. This
makes integration of such diverse technologies a challenging
task. A typical solution to this problem is represented by uni-
versal gateways, which provide internal semantics for protocol
translation. However such approach is bound to be challenged
in future IoT scenarios, as it brings substantial performance
impairments in settings with very large number of devices and
of technologies. We address these limitations, by proposing
two novel approaches. A first is based on distributing the
management of the different technologies among gateways. A
second approach makes use of Web Service delegation, with
gateways acting only as a connecting point between the entities
and some service that can interpret the information exchanged.
We implement and validate experimentally these approaches,
showing that they both scale sensibly better than the traditional
approach, guaranteeing acceptable performance even with a
high degree of heterogeneity. Moreover, we identify the criteria
which should be considered when choosing between the two
proposed approaches. Our results establish a set of guidelines
for integration in large and heterogeneous IoT scenarios.

Keywords-Internet of Things; machine-to-machine.

I. INTRODUCTION

Machine-To-Machine (M2M) interaction is an hot topic
in the Internet of Things (IoT) domain, and it refers to
the information exchange among devices without human
assistance. In the beginning, M2M was used to create
pretty simple systems that were task or device specific,
and where only one technology was employed. This, due
to the absence of a standardized M2M platforms that would
allow the interconnection of heterogeneous technologies [1].
These M2M systems are pretty simple because they must
address only one technology at a time. They need only an
interpreter, which translates data to and from the couples of
communicating devices.

The set of services and functionalities needed to enable
such interaction are generally present only in more recent
technologies, but they are totally absent in legacy, non-IP
technologies such as in old Building Automation protocols.
This is an important issue, because these devices often called
legacy devices still remain the majority of the things involved
in the IoT paradigm.

With the gradual diffusion of the Internet of Things, which
enable interactin among a large and very diverse set of de-
vices, the M2M paradigm is poised to evolve from the usual
mono-technology scenarios to scenarios involving several

different technologies.

To address the issue of making these legacy devices interop-
erable not only within their protocol domain, but in a multi-
protocol way, the usual solution is the use of universal multi-
protocol gateways as a system that groups many different
technologies under an internal semantics [2]. These gateways
solve the protocol translation issue, but they encounter two
limitations that in the IoT can lead to really inefficient
implementations. The first concerns the high engineering
costs in managing a high number of technologies in an
efficient manner. It can be seen as the incremental costs
of adding a new technology to a given scenario. The second
problem is more strictly related to scalability. Indeed, in
many IoT scenarios it would be unfeasible to have a single
gateway managing all the devices, as it could generate a
bottleneck effect on system prformance. In a context in
which devices grow in number constantly as they get increas-
ingly powerful, small, cheap and therefore ubiquitous, and
in dynamic settings where fixed and mobile devices interact,
adopting solutions which scale efficiently is essential for
an acceptable quality of the services delivered by such IoT
infrastructure.

This paper proposes two distributed approaches, respectively
called distributed gateway and web service gateway, in order
to address the issues left open by the universal gateway
approach. The Distributed Gateway approach consists in
partitioning the functionalities required for protocol trans-
lations, and in distributing them among a set of gateways
which coordinate and interact. With this approach, each
gateway typically supports only a small set of protocols,
relying on other gateways for all the other protocols. The
web service gateway approach instead delegates all the
workload needed to interpret the data coming from devices
to web services, which are accessed on demand. Under this
approach, gateways are typically quite simple, acting only
as a data forwarder from devices to the web service and
vice-versa.

In order to evaluate these approaches, we have implemented
and tested them experimentally, checking their scalability
and feasibility. Our results draw some guidelines that the
designers and developers of such gateways can follow to
create efficient and scalable IoT integration solutions.

The paper is organized as follows. In Section II we provide
some background on Machine-To-Machine interactions in
the Internet of Things, and we discuss the main issues arising

from traditional approaches. In Section III we present our
two approaches, and in Section IV we describe how we
have modeled and implemented them on an experimental
scenario. In Section V we describe our experimental set-up
and our tests, commenting on the results. Finally, Section
VI concludes the paper.

II. MACHINE-TO-MACHINE INTERACTIONS:
ADAPTATION TO THE INTERNET OF THINGS

In this section, we explain the changes that IoT brings
to the M2M interactions and why these changes make the
usual management of these interactions inadequate.

A. Evolution of the Machine-to-Machine paradigm

M2M has to evolve to face the new challenges brought
by the Internet of Things and, more generally, by the In-
ternet. Nowadays, M2M involves communications between
machines from different vendors, typically using different
technological communication protocols.

The systems must evolve, proposing new solutions to face
the heterogeneity that will be present in those scenarios.
The solutions that emerged are often referred as Universal
Gateways [3]. A Universal Gateway is a device that transacts
data between two or more data sources using communication
protocols specific to each one.

B. Traditional M2M Gateway Approach

The history of M2M interactions showed over time the
utilization of a local scenario M2M Gateway, where only a
few solutions contemplated the integration of heterogeneous
protocol and only a limited number of devices were used
in order to perform a bounded task or group of tasks [7].
This solution was efficient and successful until the Building
Automation System did not advance to the current situation,
and the Internet of Things did not create such scenarios
where huge number of devices may be employed. Figure 1
shows the approach Multi-Protocol Gateways usually use.
The Gateway can hypothetically manage, if equipped by
developers of the necessary structures, all protocols for
building automation technologies. A Gateway is imple-

Gateway

IPizieel A - Protocol Z

Figure 1.

Multi-Protocol Gateway

mented to fully support all devices belonging to different
technologies, which are employed in the scenario of in-
terest, and only one Gateway is needed to manage that
scenario. From our point of view, as the M2M interactions
domain is changing, this way of developing Gateways can
encounter two developing issues. Heterogeneity problem
as difficulty in creating solutions that can face the high

and mutable number of heterogeneous technologies of the
devices employed in current scenarios. Scalability problem
as difficulty in creating solutions which scale well with the
increasing number of devices.

1) Heterogeneity Problem: Nowadays, Internet of Things
scenarios expect the usage of devices belonging to various
heterogeneous technologies, they also expect that those
devices can be replaced over time with devices belonging
to other technologies. It means that developers of a Gate-
way should have technical knowledge of, hypothetically,
all possible technologies for devices within the Internet of
Things context. To have such knowledge of a large number
of technological protocols can be really challenging. Each
technology possesses features that are different and all of
them use different protocol stacks. To create and maintain
such an idea of a gateway can create a huge effort for
the gateways owners. The team that implements it, having
first identified the interesting technologies, must foresee
how many different developers it needs and must anticipate
specialization courses in order to give them the necessary
knowledge.

2) Scalability Problem: The Internet of Things brought
Gateways to the next level, where it is difficult to estimate
the number of devices that will be employed on a sce-
nario from the beginning. It means that the Gateway can
start working perfectly with a certain number of already
tested devices, and they can deal with the simultaneous
incoming/outgoing communications from and to devices
properly. The problems arise when the number of devices
increases with likely consequent augmentation of the number
of simultaneous communications. If a gateway was modeled
without load balancing features, it is likely that it would
collapse under the new workloads the Internet of Things
scenarios can produce.

III. NOVEL M2M GATEWAY APPROACHES

In this section we propose two approaches that can
enrich the current M2M Multi-Protocol Gateway solutions
by addressing the problems described in II-B1 and II-B2.
Both approaches aim to distribute the devices management
in order to ease the development and to provide scalability
to current scenarios.

A. Distributed Multi-Protocol

Figure 2 shows the first proposed innovative approach. In
this approach, we propose to treat the protocols singularly
or as a subset of the selected protocols in each gateway.
The devices managed by each gateway belong to a unique
technology (or in some case to a small subset of them). Each
gateway is capable of interpreting the information contained
in the raw data exchanged with the devices attached to it.
Afterwards, gateways provided by different working groups
skilled in dedicated technologies can be combined to create
multi-protocol scenarios. At first sight, this approach of

Gateway A Gateway Z
n n
Figure 2. Distributed Multi-Gateway

having every Gateway managing only one protocol may
seem like the multi-protocol Gateway is regressing back
some years ago. However, we believe that a proficient
engineering of the systems will bring advantages which
will eliminate the drawbacks if this approach is used. By
using this approach, it is possible to envisage a solution
for the two challenges previously illustrated as explained as
follows. Heterogeneity Solution: Developers of a Gateway
must have knowledge about only one technology to be
able to map the data coming from devices to the internal
semantics of the gateway and vice versa (from the semantic
to the data for the devices). This allows developers to enrich
their competences for a smaller domain of technologies that
will lead to an improvement of the quality of their work.
Obviously Gateways that manage different technology can
be employed to create heterogeneous scenarios, but each
of those gateways will be developed by different vendors.
Scalability Solution: This approach faces the scalability
issues deriving by the growth of the devices used in novel
scenarios distributing the managing of devices among more
distributed Gateways. By doing so, we can alleviate the scal-
ability constraints arising from the underlying framework
present inside the gateways. In fact, developers can try to
make a framework as scalable as they can, but eventually
the scalability depends upon the hardware and the number of
processes and threads the underlying platforms can support.
So, the only way to improve the scalability is to distribute
the amount of work among more Gateways. Nevertheless,
this approach also brings some new challenges which the
developers must face. Now, every Gateway must be able to
interact with other Gateways to implement scenarios. We
are not specifying which kinds of communications will be
used, because it depends on the design of the Distributed
Multi-Protocol System. But to interact, the Gateways need
to talk the same language, which leads to the creation of a
common language spoken by all gateways.

B. Web-Service Multi-Protocol

Figure 3 shows the second proposed innovative approach.
This approach deals with the heterogeneity of the protocols
with a methodology similar to the ones we proposed for the
Distributed approach, where only one protocol or a subset
of the selected protocol is managed within a single Gateway.
As before, Gateways managing dedicated technologies must

be combined to create multi-protocol scenarios. This main
difference is that in this approach, a solution where the
Gateways are fully unaware of the format of the data they
will exchange with the connected devices is proposed. It
receives raw data from devices and sends raw data to devices
without being able to interpret the information contained in
the raw data. To have interpretable data, the gateways need
to contact a Web Service that can perform the translation
between raw data and shared format that they will use
for internal purpose and to interact with other Gateways
(and to translate the information from the shared format
to the raw data). The Web Service performs the task of
interpreting the raw data belonging to different protocols
and translates them into a shared format. This task can
be accomplished thanks to so called Translation Modules
that developers, experts in some technologies, implement
and install on the Web Service. We believe that this ap-

U Raw Data |-
1 ! Web
1
hared Format | H
Gateway | Service
1 Shared Forma; .

Raw Data

Protocol X

Figure 3. Web-Service Multi-Protocol

proach brings solutions for the two challenges previously
mentioned in the following ways: Heterogeneity Solution:
Developers who build a gateway do not need any knowledge
of the raw data exchanged with the devices, because the
interpretation work will be performed in the Web Service,
through the Translation Mechanisms. This allows developers
to focus on the logic of the Gateway and how it manages
the incoming/outgoing communications with the devices.
Scalability Solution: The translation needs computations
regardless of the methodologies used to perform it. Those
computations could lead to some performance decreases
when the number of devices connected grows too much. This
decrease in performance does not happen in Web Service,
because they can be implemented in a way that can afford
higher workloads. With this approach, it is possible to let
the Web Service work for the Gateway, while the latter will
focus on different tasks thank to the possibility to have
asynchronous communications [4] between the Gateways
and the Web Service.

IV. MODELS

In this Section, we explain how we modeled the three
M2M interaction systems approach (Traditional, Distributed,

Web-Service). The idea is to have each system composed of
the same components in order to reproduce homogeneous
conditions when the tests are performed. What changes is
how those components are distributed.

A. Components

We stated that when M2M interactions are applied in the
context of the Internet of Things, the former gateways are
no longer satisfactory. This is due to the heterogeneity of
the devices involved and the complexity of the scenarios.

A gateway is a system that exchanges data with the
devices attached to it and makes available those data to other
components. In fact, gateways are usually parts of complex
scenarios, where those scenarios need to interact with the
devices it manages. For the purpose of this paper we do not
consider the logic of the scenario that can be managed by
Decision Makers or Control & Monitoring Systems, because
it is out of the scope, but we focus only on the data exchange
and translation part.

In our models we envisaged two main components to
be implemented and deployed - the Connector and the
Translator.

1) Connector: The Connector within the context of this
work is considered as the component to which all devices
are attached and acts as a communication bridge between the
devices and the Translator. It receives measurements from
devices that act as sensors, forwarding them to the Translator
and sending data to devices that act as actuators. Hence, it
is the manager of the information workflows in the form of
raw data.

When a device is attached to the gateway, the gateway
assigns a global unique identifier to that device based on
the IPv6 Mapping Module [5]. This mapping module allows
every gateway to identify the technology to which a device
belongs, and it is a very important aspect for the data
interpretation phase. Within this global unique identifier,
we can find other information useful for applying the dis-
tributed idea proposed in the Distributed and Web Service
approaches. The three important fields of that identifier are
Gateway Identifier, Protocol Identifier and Device Identifier.
With this identification mechanism, we can aggregate more
gateways in distributed scenarios while still having the
capability to understand which devices are being referred
to.

2) Translator: The Translator is the component that can
interpret information contained within raw data sent by
devices and can translate it to a defined format (in our
case we use the JSON format) understandable by other
components. Vice-versa, it has the ability to translate in-
formation formatted using JSON into raw data. To perform
these operations, the Translator must know the technology
to which the device that is sending the data belongs, and
this piece of information is passed by the gateway using the
global identifier of the device, along with the raw data.

B. Interactions

In this subsection we explain how the components are
deployed in order to implement the different approaches.
We also describe the communication methodologies used
between the Devices and the Connector and between the
Connector and the Translator. Changes of these methodolo-
gies would affect the performance.

1) Traditional M2M System and Distributed M2M Sys-
tem: The traditional approach and the distributed approach
have been grouped because from a model point of you they
are identical. The difference between them is the number
of technologies they manages. The deployment reflects the
centric-approach used by usual Multi-Protocol Gateway,
where the Connector and the Translator are placed into a
single Workstation.

« Devices - Connector: devices are implemented as soft-
ware modules that simulate measurements. They send
raw data to the gateway calling a method it provides as
entry point. (The interaction is a method call.)

e Connector - Translator: when a gateway wants to
translate information from raw data to JSON (and vice
versa), a thread is started and it passes the information
to that thread. Connector and Translator are in the
same memory space. (The interaction is a synchronous
request to a local thread.)

2) Web-Service M2M System: Here, in addition to the
Workstations acting as Connector, a Web Service is added
to the system in order to translate the information from raw
data to JSON (and vice versa).

o Devices - Connector: devices are implemented as soft-
ware modules that simulate measurements. They send
raw data to the connector calling a method it provides
as entry point. (The interaction is a method call.)

o Connector Web Service (Translator): when the con-
nector wants to translate information from raw data
to JSON (and vice versa) it calls an HTTP method
request in the Web Service and passes the information
as request parameter. Connector and Translator are in
different locations. (The interaction is a standard HTTP
request.)

V. TESTS

In this section, we test the scalability and the feasibility
of the three approaches. At the beginning we clarify the
objectives of the tests and we define the metrics used for
the tests. Then we compare the results of the tests in order
to evaluate them and to design development guidelines for
the gateway’s implementation and deployment.

The focus of the test is: a) to test how the different systems
responds to the variation of the workload given by the
changes on the number of contemporaneous communications
to which a system has to deal with; b) to test the difficulties

the developers find in implementing the different approaches
the systems are based on.

As said in section IV-B1 the traditional and the distributed
approaches are equivalent from the scalability point of view,
since both incorporate the Connector and the Translator on
the same workstation. For this reason we perform a single
test for these approaches and another test for the web-service
approach.

A. Set Up

In order to implement our models, we made use of
workstations and web-services. Workstations had a Intel
Xeon CPU E31245 3.30 GHz processor, with 16GB of
RAM and a 64-bit operating system. Web service platforms
have been implemented over Amazon Cloud, on a Tomcat
platform with load balancing, and auto scaling.

B. Test Metrics

In this subsection, the metrics used for the tests are
defined. Two features are to be measured: feasibility of the
systems implementation and the scalability of the systems.

Scalability: We measure the interval of time between the
instant when a device sends raw data to the Connector, and
the instant when the Translator provides to the Connector
the same piece of informations in JSON format.

Feasibility: We check the feedback provided by devel-
opers to a questionnaire that contains closed questions about
the difficulties of implementing the different systems.

1) Scalability: Each test was performed 30 times and the
reported values represent the average of the measurements.
For the Translation test, the number of devices attached
to the Gateway that send measurements at the same time
are considered and the results represent the time needed to
provide the translation for all measurements. The samples
taken for the tests go from 10 devices sending measure-
ments to 10,000 devices, all sending measurements at the
same time. Figure 4 is related to the translation performed

180.00 4

160.00

140.00

120.00

100.00

= Max Values

%
=4
o
S)

Time (ms)

Min Values
60.00

40.00

20.00 |

0 2000 4000 6000 8000 10000 12000

Number of Devices

Figure 4. Latency when the translation is performed within the workstation

within the workstation (Traditional approach and Distributed

approach). It shows the curve that represents the relation
between the number of devices that send information at
the same time and the interval of time the Translator in-
cluded within the Gateway needs to provide all information
translated. It can be seen that the latency is almost zero
when only a few devices send information and it increases
when the number of devices grows, following a slightly
logarithmic increasing trajectory. Another observation is that
the variance in the measurements in each sample is very
limited.

Figure 5 shows the curve that represents the relation
between the number of devices that send information at the
same time and the period of time Gateway needs to obtain
all information translated when the translation is demanded
from a Web Service. Unlike what Figure 4 shows, this
curve also presents latency in the situation when there are
just a few devices that send information. In this test, the
increment when the number of devices grows has a linear
trajectory. We also notice that there is a strong variance in the
measurements in each sample, which we believe is provided
by variance in the transferring of data via the Internet.

4500.00

4000.00

3500.00

3000.00 u

2500.00 u

= Max Values

2000.00 Bfw

1500.00 {\/

1000.00

Time (ms)

Min Values

500.00

0.00 !
0 2000 4000 6000 8000 10000 12000

Number of Devices

Figure 5. Latency when the translation is demanded to the Web Service

2) Feasibility: To evaluate the Feasibility, or as we de-
fined before the Easiness of creating the different systems,
a test was submitted to all of the developers that worked
on the systems prototypes. The Developers had to answer
with a number ranging from 0 (no effort) and 5 (very
difficult). The test contained four questions that we believe
are fundamental to evaluate the difficulties developers can
find when they decide to implement systems. After the
developers answered the questions, an oral session was held
in order to understand the reasons for their answers and what
obstacles were more challenging to surmount. In the project
design and implementation, we included Bachelor students
who in the beginning of the work, had existing knowledge
of language programming, but did not have knowledge of
Building Automation Systems, Distributed Programming nor
Web Service. This was done to ensure the coherence of
the tests. Figure 6 shows the answers provided by the

Developer 1 | Developer 2 | Developer 3 | Developer 4

How difficult was learning a Building 4 5 3 5
Automation Technology?
Once a technology is assimilated, how difficult
.) . B 2 3 2 2
is to manage new devices belonging to it?
How difficult was learning how to implement 3 3 3 3
in Distributed Environment?
How difficult was learning how to implement

.) 2 3 2 3
using Web Services?

Figure 6. Questionnaire about Easiness

developers and shows that to learn new Building Automation
Technology was the most challenging task they dealt with.
However, when a technology is assimilated, it becomes
easier to learn how to manage new devices belonging to that
technology. The Distributed Programming had some difficult
issues in the beginning, but considering the amount of online
documentations, tutorials and books about the topic, they
said that they could understand quite quickly how it works
and how to implement it.

C. Evaluation

In this section, the results of the tests performed are
evaluated and a choice of the recommended approach is
suggested for implementing the Gateways, with the corre-
sponding motivation.

1) Scalability: In Section V-Bl, we tested how two
different approaches scale when the number of translation
requests increments. The trajectory showed in figure 4 is
logarithmic suggests that a gateway can react well to the
increments of the number of simultaneous requests. And by
comparing the results showed in figure 4 and 5 we can claim
that there is no need to delegate the translation to a web-
service for scalability reasons.

It is a decision of the system’s designer to decide how
many devices associate to a gateway depending on the
defined acceptable latency.

2) Feasibility: The evaluation of the feasibility depends
upon the answers the developers provided during the ques-
tionnaire and the subsequent interview regarding their feed-
back. The developers expressed difficulty in learning how
Building Automations Systems functions, due to each having
different features and that it was based on different stacks
that make it even more difficult to master properly. The
main reason for their concerns is due to a lack of how
to do tutorials, which allows developers to fully study the
protocols in order to understand how they can be managed.
During the implementation, the developers tried to use third
party software libraries that already managed the protocols
and making it easier to integrate various technologies to-
gether. Regarding the Distributed Programming, the devel-
opers found difficulties at the beginning of the work, but
once they understood the paradigms and patterns on which
it is based, the work became much easier.

VI. CONCLUSIONS

The following conclusions have been drawn after analyz-
ing the test results based on the defined parameters for the
evaluations:

a: To group all Building Automation Technologies, or
a big subset of them, under a unique Multi-Protocol
Gateway can be very challenging and requires devel-
opers to invest a lot of time and effort to master them
properly.

b: The M2M Interaction Systems we have tested demon-
strate that the translation from raw data into a shared
Semantics does not imply scalability issues. The rea-
son is that the task is so fast that the amount of
measurements that could arrive at the same time can
be well managed also if high number of requests arrive
at the same time.

As guideline to developers we suggest to create gateways
mono-technology or that manage a very low number of
technologies and distribute the technologies among more
gateways. For the gateways we suggest to use the maximum
they can API library and gateways already existing. Their
main focus should be on a semantic layer to allow the
different gateways to interact and cooperate.

We believe that following these guidelines in this de-
liverable, the management of more sophisticated scenarios
can be allowed, such as complex real-time scenarios, which
currently are considered very challenging in the Internet of
Things domain.

REFERENCES

[1] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. Johnson,
“M2m: From mobile to embedded internet,” Communications
Magazine, IEEE, vol. 49, no. 4, pp. 3643, April 2011.

[2] M. Jung, J. Weidinger, C. Reinisch, W. Kastner, C. Crettaz,
A. Olivieri, and Y. Bocchi, “A transparent ipv6 multi-protocol
gateway to integrate building automation systems in the in-
ternet of things,” in Green Computing and Communications
(GreenCom), 2012 IEEE International Conference on, Nov
2012, pp. 225-233.

[3] J. Latvakoski, M. B. Alaya, H. Ganem, B. Jubeh, A. livari,
J. Leguay, J. M. Bosch, and N. Granqvist, “Towards horizontal
architecture for autonomic m2m service networks,” Future
Internet, vol. 6, no. 2, pp. 261-301, 2014. [Online]. Available:
http://www.mdpi.com/1999-5903/6/2/261

[4] E. Johnsen and O. Owe, “An asynchronous communication
model for distributed concurrent objects,” Software & Systems
Modeling, vol. 6, no. 1, pp. 39-58, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10270-006-0011-2

[5] R. e. a. G, “IPv6 mapping to non-IP protocols,” Internet
Requests for Comments, RFC Editor, RFC draft, September
2014. [Online]. Available: https://tools.ietf.org/html/draft-
rizzo-6lo-6legacy-02

