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Abstract—This work presents a data-intensive solution to
predict Photovoltaı̈que energy (PV) production. PV and other
renewable sources have widely spread in recent years. Although
those sources provide an environmentally-friendly solution, their
integration is a real challenge in terms of power management as
it depends on meteorological conditions. The ability to predict
those variable sources considering meteorological uncertainty
plays a key role in the management of the energy supply needs
and reserves. This paper presents an easy-to-use methodology to
predict PV production using time series analyses and sampling
algorithms. The aim is to provide a forecasting model to set the
day-ahead grid electricity need. This information useful for power
dispatching plans and grid charge control. The main novelties of
our approach is to provide an easy implemented and flexible
solution that combines classification algorithms to predict the
PV plant efficiency considering weather conditions and nonlinear
regression to predict weather forecasted errors in order to
improve prediction results. The results are based on the data
collected in the Techno-ples microgrid in Sierre (Switzerland)
described further in the paper. The best experimental results
have been obtained using hourly historical weather measures
(radiation and temperature) and PV production as training
inputs and weather forecasted parameters as prediction inputs.
Considering a 10 month dataset and despite the presence of 17
missing days, we achieve a Percentage Mean Absolute Deviation
(PMAD) of 20% in August and 21% in September. Better results
can be obtained with a larger dataset but as more historical data
were not available, other months have not been tested.

Keywords—Solar production prediction; PV forecast; Data in-
telligence analysis; Microgrid; Advanced Metering Infrastructure;
Energy information management; KNIME;

I. INTRODUCTION

PV is the fastest-growing energy technology since
2002 with an average increase of 48% [1]. The majority
plants are grid-connected systems and a high penetration
of PV (like in the case of islands) raises issues for the
grid-operators. Subsequently, forecasting the power output
of the PV plant is necessary to assure the grid stability.

A large amount of research studies in the domain lay
emphasis on predicting solar radiation which is a key data
to improve the results. Neural networks are widely used
to this purpose and manage to reach a MAPE around 7%
on monthly and day-ahead solar radiation forecast [1].

We can cite the example of A. Mellit, a reference author
in the subject who achieve a MAPE less than 6% for
day-ahead solar radiation in Algeria [2]. Regression trees
are not widely used but show a MAPE of 33% for PV
production prediction [3]. Some weather providers have
also developped solar production forecast solutions like
Meteoblue who reaches an average annual MAPE of 28%
in Europe using a deterministic approach [6].

Since it is essential for grid operators to analyze
and adapt forecast results according to their experience,
flexible and user-friendly approaches are preferred. A PV
plant can be modeled as a system that converts the suns
radiation with a given efficiency. This efficiency is highly
related to the solar radiation slope and cells temperature.
Therefore, at a fixed temperature and slope, the power
produced grows close linear to the global radiation. As
such, our approach focuses on analyzing and forecasting
this efficiency with statistical tools easy to understand and
to use. The method we propose can be used at different
levels:
At a mid-term level to anticipate and optimize
energy production and make the appropriate choices
of investments through energy markets. At a short-term
level, grid operators should be able to schedule the
day-ahead needs in order to manage the stability of the
grid and control the reserve capacity.

According to experts in Computational intelligence, a
single algorithm may not be successful in resolving all prob-
lems. Most methods described above use neural networks
and a few of them use regression trees. Combining models
is recommended as ensemble of heterogeneous models leads
to a decrease of the ensemble variance as the errors of the
individual models have small correlations [4]. We propose,
in this paper, to combine decision trees and non linear
regression. Contrary to most studies, we do not forecast
solar radiation but simply correct the forecasted data given
by meteorological enterprises using time series analysis
on historical predictions. Our methodology presents two
stages. As a first stage, the historical data are used to
predict the conversion efficiency of the solar panels and as
a second stage, solar radiation forecast is used to predict
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the total PV plant production. The paper is organized as
follows: In Section I the information system test bed and
the data set used are presented. Section II describes the
methodology. In Section IV, the results are described and
analyzed. Finally we conclude and discuss future directions
of research in Section V.

II. EXPERIMENTAL SETTING

A. Techno-Pôles microgrid implementation

In energy distribution, new metering solutions have
been proposed, based on the idea that exploiting properly
data on power generation, distribution and consumption,
a substantial increase in efficiency is achievable [6]. The
Internet of Things aims at facilitating the communications
of such systems. In particular, smart metering is one of
the initial and more extended use cases for the Internet
of Things [7]. Several solution have been deployed with
ZigBee [8], [9] [10], and ZigBee-IP [11]. In addition,
Wireless Smart Utility Network (WI-SUN) is also
extended with new IoT-related technologies such as
IEEE 802.11g (subGhz) [12] and offers plenty of new
opportunities to monitor the energy consumption at
dierent levels, i.e. overall consumption and also the
independent consumption from specific devices.

Techno-Pôles microgid is contextualized in the I-BAT
Swiss Project 4. This project is a convergence of expertises
in several areas of energy management. The objective
was to build a modular and intelligent information
system capable of regulating futures sub-networks of the
power supply grid. It results in the development of two
microgrids at the Techno-pôle in Sierre able to measure
and collect energy production and consumption each
second. The data are displayed in real-time through:
http://www.technopole-vert.ch. An Advanced Metering
Infrastructure (AMI) based on the Internet of Things
(IoT) has been implemented in the Techno-Pôle testbed.
This deployment provides energy-related parameters
such as the overall building load curves and a wireless
network of IoT-based smart meters to measure and control
appliances.

The Techno-Pôle of Sierre, the sunniest city in Switzerland
has a 203 kWp PV plant that represents 1200 m2 of the
roof surface. A weather station have been recently
installed in 2015 and will provide more accurate weather
data for the microgrids energy management. The site
gathers 500 people working for 50 companies including
private service providers as well as research institutes like
HES-SO which carried out the microgrid project. The
building has a restaurant, a fitness room and also multiple
classrooms and labs. All of the occupants have signed an
agreement offering full access to their consumption for
research purposes. The microgrid can also operate as an
energy storage management demonstrator as batteries
of 25 kWh with a remote control of charge/discharge
have been installed. PV electricity production becomes a
key information as an input of the optimization of such
systems.

In detail, metering infrastructures provide low frequency

parameters (load curves from the photovoltaic plant
provided by ELKO, and the grid consumption provided
by Sierre-energy) and high frequency parameters (devices
measures from the Ecowizz Zigbee smart meters). The
information system contains the elements necessary for
the storage of data via NO-SQL as the data is formatted
in JSON.

Fig. 1. I-BAT information system architecture based No-SQL databases

B. Data set description

Fig. 2. Dataset description

All data are aggregated hourly and available from
01.01.2014 to 10.03.2014. In addition to historical PV
production measures, the dataset contains historical real
measures and forecast values of temperature and radiation.
The forecasted weather values are a one day-ahead predic-
tion in 2014. It is important to note that all weather data
are available for Sion which is at 15 km of our production
site in Sierre. Actually most of weather stations in Sierre
only provide precipitations measures. 17 day missing values
which are deleted are due to the system maintenance.
PV power production values range from 0 to a maximum
of 171 kW with an average power of 32 kW per day
(including night). Weather forecasted data shows a total
Percentage Mean Absolute Deviation (PMAD) of 26% on
radiation prediction and 7% on temperature prediction.
80% (01.01.2014 to 10.03.2014) of the dataset is used for
training and 20% for prediction tests (08.16.2014 to 03-10-
2014).

III. METHODOLOGY

In this section, the training model and the error model
are presented(cf.Fig3).

Institute of Information System 2 UMR CNRS 5302
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Fig. 3. Steps of the methodology implemented in KNIME

A. Data pre-processing

This step aims at collecting and pre-processing data.
The data collected are described in the previous sec-
tion. The max production collector goal is to calculate a
maximum PV production per day that will enable us to
correct overestimated power prediction values. The ideal
maximum value should correspond to the sunniest possible
conditions for this day. More weather parameters on a
larger period are needed to estimate this ideal value. We
assume in our approach that it is the hourly maximum
production value of the week before the day to predict.
The day and night splitter uses daily sunrise and sunset
information in order to split the dataset. As night power
production is close to zero, only hours between sunset and
sunrise will be predicted for each day. Those hours range
from 6 AM to 9 PM in our dataset.

B. Training and prediction

Its important to note here that only the alpha ratio
is predicted. We remind here that alpha is the power
production divided by the solar radiation measures. This
calculation enables us to have a normalized dataset for
prediction. Another approach could be to calculate per
hour the maximum production for each day (obtained
from the best possible radiation on a clear day) and
consider the percentage of this maximum produced for
each day in the training test and then predict it given
weather condition for the test set. In our case, the aim is
to estimate the 24 values of alpha that will enable to easily
calculate the day production knowing the 24 radiation
values forecasted for this day. As noted in the previous
section, only daytime hours are predicted, night alpha
values are assumed null. As a PV plant efficiency depends
on two key parameters that are radiation inclination
(assuming cells slope is constant) and cells temperature,
the training inputs will be the hour of day and the
ambient temperature. The wind speed can also affect cells
efficiency as it influences the cells temperature but this
data will not be considered in our results as the parameter
is not collected by weather stations in Sierre. Snow height
is also a key parameter to avoid huge errors in winter due
to the presence of snow on the PV cells surface. As our
prediction focuses on August and September, precipitation
data will not be taken into account.

There are two stages in the training step: The first is to find
clusters on alpha regarding hour and temperature values
with an Expectation-Maximization (EM) algorithm. As
such, the clusters identified depend on the hour and the
temperature. This analysis of alpha values is a key step
as it enables us to understand how this ratio depends
on hour and temperature trough Gaussian distributions.
As described in the picture below, clusters and real
temperature (T) values will then be the inputs of the
decision tree learner. The decision tree predictor will
return the cluster prediction using hour of day and
temperature forecast values as inputs.

Fig. 4. Description algorithms inputs and outputs

C. Weather forecast error prediction

As mentioned in the abstract and introduction weather
parameters are not predicted in our study. To be rep-
resentative of most of grid operators, we use forecasted
values from national weather services. Nevertheless, the
analysis of historical forecasted measures of radiation
and real measures of radiation shows a predictable error.
Actually the sunnier the hour, the more underestimated
the forecasted radiation is. A polynomial regression on
radiation forecast errors enables us to go from 16% to 5%
of PMAD on radiation forecast errors for the test set (20%
of the dataset).

D. Power prediction

According to alpha definition, the predicted power for
each year is given by the formula below: The decision tree
output is the predicted cluster.The predicted alpha value is
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taken as the clusters mean value. The max power produc-
tion estimated in the data collecting and processing step
is used as a final stage to erase overestimated production
prediction. The results are given in the following section.

IV. RESULTS

A. Clustering and decision tree results

Alpha values are divided into 6 clusters based on the
training dataset.

Cluster 0 1 2 3 4 5
Instance 7% 13% 8% 43% 22% 7%

Mean 0.22 0.14 0.2 0.18 0.17 0.20
stdev 0.30 0.04 0.12 0.05 0.02 0.10

TABLE I. ALPHA CLUSTERING RESULTS

The classification accuracy of the predicted cluster on
the test dataset is 88%. The less accurate classified cluster
is the 4th with an accuracy of 50% while other clusters have
an accuracy of more than 88%. Cluster 4 covers 11 AM to
1 PM which generally corresponds to the sunniest hours
of the day. These hours also have the highest radiation
forecast errors.

B. Prediction performance description

Month MPPROD MAE RMSE PMAD MAPE STDEV
kW kW kW % % kW

08 38 7.8 18.3 20 28 16.4
09 32 7.0 13.9 21 26 12.1

TABLE II. FULL METHODOLOGY RESULTS

Month MPPROD MAE RMSE PMAD MAPE STDEV
kW kW kW % % kW

08 38 5.4 9.8 14 23 8
09 32 5.7 11.6 18 34 10

TABLE III. RESULTS ASSUMING PERFECT RADIATION FORECAST

Month MPPROD MAE RMSE PMAD MAPE STDEV
kW kW kW % % kW

08 38 9.5 19.4 24 22 17.0
09 32 9.0 16.4 28 34 13.7

TABLE IV. RESULTS WITHOUT RADIATION ERROR FORECAST PREDICTION

The results are given for 3 scenarios. Scenario A shows
the results of the full methodology described in the pre-
vious section. Scenario B shows the production assuming
a perfect radiation forecast (forecasted radiation equals to
real radiation). The aim is to analyze errors that are only
due to alpha prediction. Scenario C shows the production
prediction using the basic forecasted radiation. The aim is
to see the impact of radiation forecast correction on results.

The first column MPROD is the average production
per day (24 hours) given as a reference for a better under-
standing of the Mean Absolute Error (MAE) and the Root
Mean Square Error (RMSE). The STDEV criteria is the

standard deviation of errors. For solar power prediction,
the MAE gives a better understanding of prediction errors
(7.8 kW in August and 7 kW in September). Actually
the hourly electricity cost on markets is fixed per kW
and does not depend on the percentage of the energy
to buy to the total production. For the percentage error
criteria, the Percent Mean Absolute Deviation (PMAD) is
preferred instead of the Mean Absolute Percentage Error
(MAPE) for solar power prediction. The PMAD is 20%
for August and 21% for September. Scenario A compared
to scenario B shows that in August, (resp September)
6% (resp 3%) of the PMAD error is due to radiation
prediction errors. Therefore, the power prediction error due
to alpha prediction is 14% (resp. 18%) for August (resp.
September). The third part of the table shows the impact
of radiation forecast correction on the results. It enables
us to save respectively 4% (resp. 7%) of errors in August
(resp. Sept) which represents approximately 2 kW per day.

C. Results Analysis
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Fig. 5. Exemple of days with the smallest MAE error for two different days
(08.19.2014 and 09.18.2014)

The average PMAD for the two days are respectively
5% and 26% and the MAE related is 1 and 2 kW. The
high PMAD value for the second day is due to a lower
production. This gives a typical example why MAE and
RMSE values give a better understanding of prediction
errors. As shown in the graph, the prediction fits well
with the real power production. The second day on the
graph shows that low values of production can also be well
predicted. The errors on alpha prediction are respectively
9% and 15%. The first day represents an ideal sunny day
when solar radiation is easier to predict. The percentage
of sun duration compared to the maximal sun duration
possible for the locality is 80% and the cloud cover
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parameter indicates a clear day. For the second day, the
sun duration ratio is 10% and the cloud cover parameter
indicates a cloudy day. However the prediction fits also the
real power well, as weather forecast is accurate for this day.
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Fig. 6. Exemple of days the highest MAE error for two different days
(09.05.2014 and 09.20.2014)

The MAE of these days are respectively 14 and 12
kW on an average production of 16 and 31 kW which
leads to a PMAD of 90 resp. 40%. The graph shows
sudden variations of radiation which is typical for cloudy
and windy days. Actually, most of the highest MAE errors
occur on cloudy days of low sunshine duration. The cloud
cover is 10% and 50% for the two days represented in
the graph. These instable weather conditions are more
difficult to predict. As the graph shows, the evolution of
the predicted power follows the one of forecasted data so
that high variance in radiation forecast are reflected in
the production forecast. The first day, the error is due to
both wrong radiation and alpha forecast with PMAD of
40% and 60% respectively whereas radiation forecast is
more responsible for the second day error as its PMAD
is 48% and alpha prediction PMAD is 1%. Moreover,
results show that the average error per hour is higher in
sunny hours. According to the results, the highest MAE
hours are 11 AM to 2 PM with an average of 18 kW
whereas the MAE has an average of 8 kW for the other
predicted hours. Actually this error trend is also observed
in radiation forecast data.

V. CONCLUSIONS

The prediction work in our approach focuses on the
PV energy conversion ratio from sun radiation. Using an
EM clustering algorithm and decision trees on a dataset

from January 2014 to October 2014, the PV efficiency is
estimated with an average PMAD of 16% for August and
September. The forecasted radiation collected is corrected
with a polynomial regression so that the related power
prediction have an average PMAD of 20% instead of 26%.
Results errors are higher in the sunniest hours. At 11 AM,
12, 1 and 2 PM the MAE is more than two times higher
than the other hours predicted (18 kW vs 8 kW). In a
sunny and clear day, the production is easier to estimate.
It becomes an issue on cloudy and windy days when the
global radiation is subject to more variations. The results
can be improved if the maximum possible production per
day is given as an input. A larger dataset and more
weather parameters should help to estimate the maximum
production and improve the results. Moreover, a prediction
per hour should also improve the results. It would enable
us to focus the prediction work on critical hours where
other algorithms like nonlinear regression or SVM should
be helpful for a better accuracy of alpha prediction.
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