
A Process-Based Internet of Things

Socrates Varakliotis, Peter T. Kirstein
UCL Computer Science

Gower Street, London, WC1E 6BT UK
Email: {S.Varakliotis, P.Kirstein}@cs.ucl.ac.uk

Antonio Jara, Antonio Skarmeta
Computer Science Faculty

University of Murcia
Email: jara@ieee.org, skarmeta@um.es

Abstract—The Internet of Things (IoT) is envisaged as a
unified network of ’smaller’ networks that live on the fringes of
the Internet, such as systems that monitor and control buildings,
industrial plants, the power grid, etc. The Internet Protocol (IP)
has been promoted as the transport glue that implements this
vision. Although we observe a converged view from the various
application domains that their gateways should adopt IP, it
is clear that the path to full adoption is long. The gateways
may impose very specific requirements of security, resilience to
failures, ease of maintenance and upgrade. We present the design
goals of an enhanced architecture for the IoT that can reduce
such concerns, paving the way for faster adoption of IP in the
IoT. We argue that the functions one needs to perform in IoT
networks of various application domains can be summarised in a
small group of basic request-response operations, which traverse
gateways and act as the transport layer. We describe how more
complex functions, abstracted into server-based processes, can
then be executed by the basic transport operations. With this
approach we aim to reduce the technology-specific functions of
IoT gateways, which now even become transparent, at best.

I. INTRODUCTION – PROBLEM STATEMENT

In the Internet of Things (IoT) a key role is played by the
gateways and the services that they must perform. In many
projects, and in particular in the EC FP7 Project IoT6 [1],
an architecture has been defined which distinguishes between
the general Internet, a ServiceNet – in which the services
specific to the domain are carried out, and a DevNet – which
deals with the actual physical devices (see discussion on the
Architecture in Section III and Fig. 1). Because of the large
number of devices that will be required in the IoT, and the
benefits that would accrue from recent protocol advances,
it is clear that IPv6 would be desirable particularly in the
ServiceNet. The processing power of the devices themselves is
also advancing, but because their applicability covers so wide
a spectrum of activities, it will be some time before we can
expect them all to be IPv6 enabled. Many will continue to
use the legacy networked systems, like KNX [2], BACnet [3],
X10 [4], in the Buildings Automation Systems domain. The
prevalence of Internet technology is encouraging suppliers to
provide Internet interfaces to such systems to allow them to
be controlled remotely – but normally these use the Internet
just to carry the control and monitoring functions for remote
operation. There is a growing tendency to have sensors and
actuators operate over wireless rather than cabling – partly
for flexibility and partly to reduce installation costs. Many of
the recent developments of Internet protocols are directed at
standardising the above procedures.

The nature of the environments in which IoT is starting
to be deployed is giving an increasing importance to having

the control and monitoring functions run as services that
are related to the application domain, and are agnostic to
the technology of the devices. In addition, there are very
important requirements of security, resilience to failures, ease
of maintenance and upgrade. These functionalities contribute
significantly to the complexity of the gateway functions that
must be performed. At the same time, the very prevalence
and nature of the devices makes it important that they be as
resource-efficient and power-efficient as possible.

The trend in many projects and products has been to
incorporate most of the functionality needed into the gateways
– or to relax some of the facilities for security and re-
configuration to allow less powerful hardware to be used in
the controllers/gateways. At the same time there have been
very significant developments in Internet protocols to help
simplify and standardise that portion of the communications
architecture. Of particular importance are the following:

• The application interface of CoAP [5], which can op-
tionally operate in a secure and reliable fashion between
entities at the datagram level with reduced resources. It
has been accompanied by the notion of CoAP proxies,
which allow functionality to be carried out in other
HTTP- or CoAP-enabled systems on behalf of the original
requestor.

• The wireless communications systems based on IEEE
802.15.4 [6], 6LoWPAN [7], RPL [8], which allow op-
eration over low-power wireless networks – even when
some nodes are deliberately powered off to reduce power
consumption (low duty-cycle systems).

• Web Services are based on streams over HTTP; this is
now very prevalent, and can be configured to provide
secure and reliable service.

Finally, there have been two other developments. There is
a large growth in Cloud Computing, which allows computing
processes to be run remotely, and is a very energy-efficient
way of having powerful servers available in a resilient cost-
effective way. Secondly, there has been a realisation that the
original concept of the Domain Name Service (DNS) that is
at the heart of the Internet could be extended to distributed
clusters of repositories. These can hold securely replicated data
relevant to IoT deployments. The repositories can have both a
local secure updating of their data, and yet a universal secure
access to this data.

This paper shows how these different threads can be
brought together to provide IoT systems that can make max-
imum use of on-going developments to provide cost-efficient,
power-efficient, secure and maintainable systems. The key

2014 IEEE World Forum on Internet of Things (WF-IoT)

978-1-4799-3459-1/14/$31.00 ©2014 IEEE 73

to the methodology is to reduce the functionality needed in
the device gateways themselves to a minimum, while putting
much of the technology-dependent functionality in general-
purpose servers – which could even be part of cloud-computing
clusters. We argue that it is possible to define the whole
gateway functionality as a number of separate processes, and
to carry these out either in the same or different processors. It
is only necessary to have one of the processes accessible ‘from
outside’ by HTTP or CoAP. All others can then be accessed
securely via CoAP proxies.

II. RELEVANT LITERATURE

Many authors have made contributions to the subjects
treated in this work. We highlight in the following paragraphs
the pertinent approaches to gateways1:

Server-based logic for the IoT has been discussed by
Kovatsch et al. [9]. They propose an IoT architecture which
decouples infrastructure from applications. Then the main
logic of the devices is implemented on servers in a cloud
system. This approach respects nicely the end-to-end Internet
principle. We adopt this approach and build our IoT enhanced
architecture on same design principles, emphasising on the
network communications.

In a complementary approach, Ericsson Labs [10] pro-
poses a gateway framework for legacy device integration,
called Generic Device Access, which encapsulates various base
drivers at the lower layers to terminate the specific protocol
stacks “southbound” towards the devices. They then expose
the specific device capabilities to applications with protocol
adapters, written as a set of general Java APIs, in an OSGi
environment.

The strength of both papers above is that the authors did not
limit their vision to a single application domain (i.e. buildings,
or smart grids, etc.) but realised that a generic, but complete,
communications stack can be built that directly integrates
sensor and actuator networks (including RFID, PLC, etc.) into
the Internet, based on lightweight RESTful web services.

Jung et al. [11] allow the interconnection of heterogeneous
legacy technologies by use of “multi-protocol gateways” with
IPv6 in the network layer. The novelty of their design lies in the
utilisation of EXI-compressed messages to bind well-identified
functions of Buildings Automation Systems (BAS), called
contracts, to CoAP. The approach is tied to the well-defined
BAS management framework oBIX and therefore limits the
reach of such gateways to the BAS domain, which is rather
dominated by legacy systems. Furthermore, Jung’s approach
could be considered an instance of Ericsson’s gateway with an
oBIX protocol adapter.

Use of the Handle system as a resource resolver for the
IoT has been proposed [12]. While an initial assessment of
the Handle system and protocol [13] revealed that it was not
IPv6 ready for direct integration with IoT services, as defined
in Section III, this has since been remedied. Further aspects
of such integration and the relevant functions are detailed in
Sections IV and V.

1A comprehensive review, including various data representations and pro-
tocols (EXI, JSON, REST, oBIX, CoAP, etc.), exists in [18]

The above key literature has laid a solid foundation of
design principles, components and technologies one could
employ in the design of an efficient, scalable, secure and
maintainable IoT architecture. In the following sections we
gather the best elements of all above works and illustrate
these in the implementation of an advanced architecture for
the IoT, which is based on processes and (clusters of) servers.
This way we decouple the application from the infrastructure,
where possible, and build generic transparent gateways where
the application-layer protocols are agnostic to the underlying
network and vice versa, reminiscent of the gateway-to-router
evolution in the Internet over the past 30 years. Furthermore,
we are not limiting the gateway design to one application
domain. We assume, however, that in all domains, the devices
are capable of profiling their constrained capabilities in CoRE
fashion [14], or by adopting the IPSO Application Framework
[15], or otherwise. Such profiles can then be resolved by
systems like Handle.

III. IOT ARCHITECTURE AND FUNCTIONS

Our concept of the generic architecture of the IoT is shown
in Fig. 1 and has been introduced previously in [16].

Figure 1. Schematic of the Internet of Things.

Here the primary purpose of this paper is to consider the
architecture of the gateway functionality between the DevNet
and the ServiceNet. We identify below a set of functional
components, which we will call IoT services, that we believe
should serve as the fundamentals of the IoT infrastructure in
the ServiceNet.

• A name-to-address resolver, which uniquely maps a
generic name (‘handle’) to an ID representing an IoT
resource

• A configuration manager, which is the key location
where IoT devices could look up, retrieve and upload their
configuration status

• We have assumed that IP (IPv6) is the key network
addressing protocol of the end-devices, therefore we ex-
pect to see a universal mapping between IPv6 addresses
and resources/devices. For IP-enabled objects the IPv6
addressing is a given. For legacy technologies IPv6 ad-
dressing can be achieved through some IP addressing
proxy mechanism [17]

2014 IEEE World Forum on Internet of Things (WF-IoT)

74

• We want all of the above operations to be performed
in an as secure an environment as possible, between a
device/resource and an IoT server

In the following sections we describe the proof-of-concept
mechanisms of an enhanced architecture with the basic IoT
services described above (resolver, configuration manager,
secure operation and IP addressing proxy). In ongoing work
[18], we describe how group communications (e.g. multicast)
and translators (such as multicast-to-unicast, or IPv4-to-IPv6
bridges) can be fitted in as enhanced IoT services. The res-
ulting enhanced architecture is analysed later (Fig. 4, Section
V.)

In theory, the IoT services described above could be
implemented anywhere2. In fact it may well be possible to
locate some of the services in the Internet itself. Which part
of the Internet would be an implementation optimisation that
we will not consider in detail in this paper. In contrast, we
maintain here that frequently the more appropriate location to
run such services is in the network vicinity of the ServiceNet,
or the gateway to the DevNet. (This makes the whole advanced
architecture compatible with other architectures.)

We show DevNets of two types:

• The current generation of legacy networks which may
adopt proprietary protocols, or ones that are specific to
a particular domain (like the BACnet or KNX used for
buildings management).

• The emerging generation of wireless networks, designed
for the IP-enabled IoT environment, using IEEE 802.15.4,
6LoWPAN, RPL, etc.

We will show that gateways to both sets of DevNets can
be improved, but that the improvement is much greater if the
devices have embraced the IPSO concepts, which advocate
the use of IPv6 in Smart Objects, for use in energy, consumer,
healthcare and industrial applications.

IV. BASIC GATEWAY SERVICES

The IoT covers such a broad range of applications that it
is very difficult to propose single solutions that cover them
all. A typical exemplar IoT application that we consider in
our prototype work is the monitoring and control of buildings.
This domain might contain a number of subsystems that can
be monitored and controlled, e.g.:

Lighting systems, Heating, ventilation and air-con-
ditioning (HVAC) systems, Electricity supplies, Water
supplies, Window blinds, Fire alarms, Computer sys-
tems, Door access systems, Personnel records (roles
and badges), etc.

For each of these there must be configuration profiles.
While each has its own idiosyncrasies most will want to
monitor its state or give a reading. Many will require some
form of actuation. Many will have their own proprietary
control system3 – with its own set of addressing, security

2In the remaining text we may use the term service and process interchange-
ably. The rationale is that IoT services may be implemented in one or more
processes off the gateway host.

3Hence, we distinguish the gateway’s function from that of the controller.

Figure 2. View of IoT system with integrated Application-Level Gateways.

and functions. Up to recently, the trend was to install a large
number of unconnected systems. There has now been a further
trend to have the sensor and actuators able to be controlled
remotely, with the communications to the controllers being
some sort of Internet technology – even if individual sensors
or devices are not yet so addressable. While it used to be
the practice to program the configuration of each controller
separately, it is more common now to have a repository
of device configuration profiles for each subsystem, and to
have the capability of loading any profile remotely into the
controller. Of course there would be a similar one of these for
each subsystem. It is possible that the monitoring data from
the different subsystems is brought together in one monitoring
server. The servers may all be on the ServiceNet of Fig. 1,
though some may even be on the general Internet.

When one looks at the sort of technology that goes into the
controllers of the various subsystems in Fig. 1, there is now a
trend to augment their functions, and to make them more like
the IoT6 gateway component that appears in Fig. 2 (see the
inner rectangle, labelled ‘Smart Board, multi-protocol card’).

The gateway of Fig. 2 is quite complex. In practice it is
an Application-Level Gateway, with translations occurring at
most of its functional layers: networking, transport, applica-
tion. When the need to provide secure access to the devices
through this gateway is added, with role-based authorisation
for individual operations, the complexity is clearly formidable.
For wired controllers, it would even be difficult to replicate
the device, and it might have to be maintained while in real-
time operation. Moreover a different version of these would
be necessary for each subsystem.

While all the functions of Fig. 2 are necessary, we are
experimenting with a much more resilient version of such
a system. At its most extreme, all the technology-dependent
translations are carried out in server processes. These include
the following:

(i) A Building Management System (BMS) that requests
sensor data and sets devices according to its model of
the different subsystems of the buildings. This includes

2014 IEEE World Forum on Internet of Things (WF-IoT)

75

the set of entities that are requesting to carry out specific
operations. This system will send messages requesting a
sensor reading/actuator system to read/set the state of a
specific set of devices

(ii) The BMS most commonly nowadays is a browser-based
application, hence it might require to access the IoT
subsystems via an HTTP-CoAP proxy.

(iii) A resolver that provides secured access and returns the
location of the configurations of the set of devices. It
also provides the locations of the server that can translate
the read/write operations into the exact data stream(s)
required by the relevant controller, and the location of the
controller. Finally, it contains the Public Key certificates
of the entities authorised to carry out all the possible
operations.

(iv) One or more repositories that hold the configuration data
of the devices

(v) One or more servers that can carry out the address
translation processes needed by this set of devices.

(vi) An enhanced controller for each subsystem

A typical sequence of operations would be as follows.

- The BMS (i) will issue a series of secured messages, using
web services over HTTPS to a resolver system (iii) like
Handle.

- The resolver (iii) will check that the relevant operations
are duly authorised. If the operations are authorised
relevant configuration information locations (iv) will be
returned.

- A set of secured messages encapsulated into CoAP will
be sent by the BMS (i) (or its proxy (ii)) to the translators
(v).

- The translators (v) will then send secured strings of data,
in the exact syntax and semantics of the legacy device
controllers to the gateway controller (vi). The controllers
(vi) are enhanced only by including a CoAP module that
incorporates DTLS. The reason for this last is discussed
below.

V. ENHANCED GATEWAY FUNCTIONALITY: A
DISTRIBUTED PROTOCOL STACK

The previous section indicated a preliminary breakdown
of core functions of a gateway (with controllers) to smaller
components with specialised functionality. With the above
basic IoT services all the technology-dependent operations are
already being carried out as data streams with the current mode
of working; exactly the same streams can be generated in
processes upstream of the gateway, passed through as data via
CoAP – just as the present generation of controllers expect.

With this observation in mind we summarise in Fig. 3
a typical generic IoT layering model, showing on the left-
hand side available technologies and applications. Unlike the
majority of previous work we identified in the literature, this
layering is not constrained to one application domain. On the
right-hand side we propose a potential protocol stack, with
the functions of interest to us shown as smaller blocks in the
various layers. These smaller blocks provide functions that are
very often required, but need not all be co-located. Some could
be distributed for execution as processes on servers elsewhere.
We will refer to this stack as the “distributed protocol stack”.

Figure 3. Typical IoT layering model and potential protocol stack.

The building management application normally adopts
some abstraction of the building, which is quite technology
independent; thus it may include the subsystems listed in
Section IV (HVACs, lighting systems, temperature gauges
etc.) with some abstract model of their configuration, but
none of their technology. Just as in the single gateway case,
a generic information model (description of methods and
objects) tailored to buildings, like oBIX, may be used in a
server process, with support from data representations like
JSON.

In our enhanced architectural view, shown comprehensively
in Fig. 4, this requesting application (i) will access gateway
servers by web services using HTTPS, via a name resolution
service like Handle (iii). This resolver already contains all the
infrastructure required to authorise the transaction – including
duplication protection against replay. If the transaction is not
authorised, either a refusal will be returned or no action taken.
However if the transaction is authorised, the response will
include a one-time security token, signed by the resolver. At
this level, the gateway process will access the resolver with
information on the symbolic operation and the requester. The
resolver will respond with the location where the proxy (ii)
for that technology is carried out, and the repository where the
configuration data is located (in our diagram the Configuration
Manager is collocated with the resolver (iii), but other data may
be configured in a separate repository (iv)). All the communic-
ation between processes from here-on can be via CoAP using
DTLS (vi). The technology-dependent translation process will
access the configuration repository for real address bindings
– this may include the sort of addressing proxy (v) defined
in [17]. The ensuing messages are then sent via the CoAP
on the physical controller (vi) in the syntax and semantics it
understands. The controller need only verify that the eventual
data stream it has received includes the secure token from the
name resolver; no other authorisation information is required.
Of course in some application domains other considerations
may require additional verification or audit trails. Successful
actuation will be acknowledged signed by the controller private
key. Requests for monitoring data will be sent to specified data
repositories signed with the controller key.

In future work we will address comprehensively the ad-
vanced IoT services of Mobility and Group Communications.
For completeness their processes are shown in the ‘Translators
Cluster’ (v) of Fig. 4.

2014 IEEE World Forum on Internet of Things (WF-IoT)

76

Figure 4. Schematic of a typical ‘gateway’ controller with a distributed protocol stack.

All the above has removed most of the technology-
dependent extension out of the gateway controllers and into
servers. It has also located the resource-hungry, and very
tricky, security operations to a location where proper security
assessment can be made. Moreover, this security operation is
largely unrelated to the technology of IoT being employed.
This has significant advantages. The added functionality of
CoAP will not increase the processing and memory load on
the controller. Moreover, the CoAP module itself will be a
well-known and tried software module. Hence the probability
of destabilising the supplier’s controller is minimised. All the
other processes are in servers that can be replicated. This
permits all maintenance, trouble-shooting and upgrades to be
carried out off-line. Depending on the type of processing and
the quality of the networks, one can choose which operations
should be carried out near the controller on the ServiceNet, and
which can be carried out further up-stream – even in processor
clouds.

VI. IOT SECURITY

There are many aspects of security. We have discussed
already in Section V how we propose to ensure the use of
powerful security procedures without overloading the gate-
way controllers. Another aspect is the assurance that once
the transaction has been authorised, the subsequent chain of
transactions does not appreciably introduce new vulnerabilities
– though they can introduce delay. The vulnerabilities caused
by physical tampering with the IoT components are potentially
serious, but are beyond the scope of this study. One of the
places where CoAP provides only a subset of services is in
its provisions for security. While HTTP allows for the use of
many forms of security, CoAP has been defined only with the
use of DTLS [19] over UDP, and that only with unicast links.

The fact that only unicast links are supported between
a client and server does not proscribe the use of multicast
addresses; it is just that only a unicast link is protected. If a
multicast address is used, a multicast-to-unicast bridge can be
provided as a translator service. However, the protocol protects
for message integrity, confidentiality, replay, source/destination
and some Denial of Service. Since Public/Private key protec-

tion is used, a gateway need accept messages only from a
trusted source – indeed in our model this may be restricted to
ones carry the security token signed by the resolver.

The impact of the above is that it will not require much
resource to provide full security in a gateway. An up-stream
server can provide full role-based checking on the authorisation
for any operations; the gateway may then keep a cache of the
public keys of the trusted servers. Only authorised monitoring
or activation requests will be transmitted on to the gateway.
Thus the gateway need merely check the integrity and source
of the datagram; no further authorisation checking is required.
This acts also as a partial protection from DoS attacks on the
gateway. Any other messages received can be discarded.

Thus the burden of full authentication and authorisation has
been passed up a chain where previous servers can provide
full role-based authorisation requests with, if necessary, full
audit trails. In some cases this security functionality can also
be located in technology-dependent translation servers. Often,
however, the outside request will come through a resource
directory like Handle, which has built in this infrastructure for
all its requests. The choice of these is application dependent.

Of course it will often be necessary for the devices them-
selves to have in-built safety mechanisms, to ensure that they
will protect the subsystems from communications failure or
other incorrect operations

VII. TECHNICAL ACTIVITY

All the gateway components, i.e. those of Fig. 2, have been
integrated in the IoT6 project. Most are installed into a single-
processor gateway. This gateway is expected to be able to
provide a link into a number of different device controllers or
even complete monitoring and control subsystems – that may
even not be IP-enabled. Detailed results will be presented in
a follow-on and associated publications [18]. Suffice to say
that we have identified existing modules that provide all the
functionality needed – either from modules in the single-node
IoT6 gateway, or developments elsewhere.

While many existing name/location resolvers could be
used, we evaluated the Handle system as being particularly

2014 IEEE World Forum on Internet of Things (WF-IoT)

77

suitable for a “proof of concept” pilot. Its resolver is avail-
able locally as part of the global Handle infrastructure, and
has been accessed experimentally from our system. Separate
security modules exist in the different implementations of
Handle (HTTPS) and Contiki (mostly as IPSec in the IP-
enabled end-nodes). The use of oBIX/JSON to describe certain
configurations has been completed with the gateway of Fig. 2
and specific Use Cases in IoT6.

We have re-constituted the integrated process of Fig. 2 into
the new vision of Section V. We have validated a suitable
DTLS module for Contiki to encompass all gateway operations
as described. We have set up and validated an HTTP-CoAP
proxy. In the next phase, we will be re-engineering some
service modules (IP Addressing Proxy, a multicast bridge and
a Home Agent for network mobility) running on the integrated
gateway for some legacy technologies like X10 and/or KNX
to now execute on a server process, on behalf of the gateway.

VIII. CONCLUSIONS - FUTURE WORK

We have outlined a generic approach to the development of
IoT gateways, which is particularly relevant to one connecting
in legacy automation systems. It should lead to a new archi-
tecture of “gateway processes”, which can be better tailored
to specific application domains to provide more maintainable
systems that are operationally simpler. It has been shown that it
can use state-of-the-art mechanisms for representing a specific
domain of building automation, and incorporating one of the
latest versatile operational object location resolvers. It has
shown how it is possible to incorporate strong security into
the IoT operations, without incurring unacceptable overhead
onto the real-time components of the system.

There has been a temptation to build “universal gateways”,
meaning that the same hardware, and much of its software,
can be used with different device controllers. In that concept,
there is a significant modification of the gateway functionality
for each different application domain and equipment. The
approach suggested here is almost the opposite. Here we
advocate adding a minimal upgrade of the normal operation of
each technology system gateway – so that it can be used in any
environment that is appropriate. The different monitoring and
actuation processes are expressed in virtual form. The config-
uration information is also expressed in configuration profiles
stored in systems that could be in local – but sometimes even
more distant clouds. The secure binding, and the introduction
of the technology-dependent aspects, is carried out in servers
that can be replicated. The complex security operations are
carried out in specific, potentially sophisticated, processes.
Some of the more complex variants, like support for mobility
and multicast, can be carried out also in such server-based
processes. For legacy systems, this implies minimal change by
the supplier for the equipment. For the more modern IP-based
IoT sensor and actuator systems, the gateways may become as
simplified over the current concept as the router gained over
the application gateway in the early Internet. Exactly which
segmentation of function is desirable – or even feasible – is
application dependent. In the pilot system we are developing,
we will gather data on comparison of response times due to
unified and distributed gateway implementations. This should
allow more informed decisions on the optimum deployment of
gateway(s) in specific environments.

ACKNOWLEDGMENT

The authors would like to thank Vint Cerf and Bob Kahn
for early discussions on the enhanced architecture and integra-
tion with Handle. This work has been supported by EC grant
FP7-ICT-2011-7-288445 (IoT6).

REFERENCES

[1] IoT6 European Project. “Universal Integration of the Internet of Things
through an IPv6-based Service Oriented Architecture enabling hetero-
geneous components interoperability” (2012).

[2] KNX: The Worldwide standard for Home and Building Control, http:
//www.knx.org/knx/what-is-knx

[3] S. T. Bushby. “BACnet: a standard communication infrastructure for
intelligent buildings.” Automation in Construction 6.5 (1997): 529-540.

[4] X10 Industry Standard, http://en.wikipedia.org/wiki/X10 (industry
standard)

[5] Z. Shelby, K. Hartke, and C. Bormann. “Constrained application protocol
(CoAP)” (2013).

[6] IEEE 802.15.4. “Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs)”, http://standards.ieee.org/getieee802/download/802.15.
4-2006.pdf, 8 September 2006.

[7] Z. Shelby and C. Bormann. “6LoWPAN: The wireless embedded Inter-
net”. Vol. 43. Wiley, (2011).

[8] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, JP. Vasseur and R. Alexander. “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks”, IETF RFC6550.

[9] M. Kovatsch, S. Mayer and B. Ostermaier. “Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things”. 6th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 751
- 756. Palermo, 4-6 July 2012.

[10] Ericsson Labs, blog post by Jan Holler, 15/11/2012. “Having a
headache using legacy IoT devices?” https://labs.ericsson.com/blog/
having-a-headache-using-legacy-iot-devices.

[11] M. Jung, J. Weidinger, C. Reinisch, W. Kastner, C. Crettaz, A. Olivieri
and Y. Bocchi. “A Transparent IPv6 Multi-protocol Gateway to Integ-
rate Building Automation Systems in the Internet of Things”. IEEE
International Conference on Green Computing and Communications
(GreenCom) 2012, pp. 225-233. Besancon, 20-23 Nov. 2012.

[12] D. Standeford, Washington Internet Daily, Vol 13, No 166. “IoT Naming
System Said ’Critical’ for Network of Connected Devices But Which One
Unclear”. http://www.cnri.reston.va.us/papers/wwid082712.pdf

[13] S. Sun, L. Lannom, and B. Boesch. “Handle system overview”. RFC
3650, November, (2003).

[14] Z. Shelby and M. Vial. “CoRE Interfaces”. Internet Draft draft-shelby-
core-interfaces-05. 26/8/2013.

[15] Z. Shelby and C. Chauvenet. “The IPSO Application Framework”. IPSO
Alliance ’draft-ipso-app-framework-04’, 24 August 2012. http://www.
ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf

[16] V. Cerf and P. Kirstein. “Gateways for the Internet of Things, An Old
Problem Revisited”. Accepted in Globecom 2013.

[17] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis and
P. Kirstein. “IPv6 Addressing Proxy: Mapping Native Addressing from
Legacy Technologies and Devices to the Internet of Things (IPv6)”.
Sensors 2013, 13, 6687-6712. doi:10.3390/s130506687

[18] S. Varakliotis and P. Kirstein. “A process-based Internet of Things”.
Technical report, October 2013. http://www.cs.ucl.ac.uk/staff/P.Kirstein/
IoT Korea Long.pdf

[19] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2”, RFC6347, January 2012.

2014 IEEE World Forum on Internet of Things (WF-IoT)

78

