
Short Paper: A Scripting-Free Control Logic Editor
for the Internet of Things

Markus Jung, Esad Hajdarevic, Wolfgang Kastner
Institute of Computer Aided Automation

Vienna University of Technology
Vienna, Austria

e-mail: {mjung,ehajdarevic,k}@auto.tuwien.ac.at

Antonio Jara
Information Systems Institute

University of Applied Sciences Western Switzerland
Sierre, Switzerland

e-mail: jara@ieee.org

Abstract—The Internet of Things scales the Internet to billions
of embedded nodes and allows to link physical and cyber systems
to form complex control systems. Current research focuses mainly
on the networking and communication protocols and leaves the
application layer and aspects like the engineering process and
creation of control logic out of scope. Existing approaches are
mainly based on using scripting languages to create control
logic for the Internet of Things, which is a problem for non-
technical users. This paper presents oBeliX which is a generic
user interface and graphical control logic editor for the Internet
of Things. The system requirements to enable a scripting-free
creation of control logic are stated and a concrete system
fulfilling these requirements together with a proof of concept
implementation and evaluation are presented.

Index Terms—Internet of Things, IPv6, graphical control logic

I. RELATED WORK

A centralized control approach based on a RESTful runtime
script container is presented in [1] where a JavaScript execu-
tion engine is used as runtime container and acts a client/server
model with CoAP enabled devices.

The WoTKit [2] provides a framework to create IoT
mashups. Its architecture is based on a Java Web application
using the Spring Framework. For exchanging sensor data
between components, a Java Messaging Service (JMS) broker
is used. A graphical editor allows wiring logic modules similar
to the popular Yahoo Pipe Web mashup editor.

There are several Internet of Things platforms like
Paraimpu [3], Xively1 (known as COSM or Pachube) or
ThingSpeak2. What they have in common is a centralized
cloud platform that is used to collect sensor data and infor-
mation about devices.

II. SYSTEM REQUIREMENTS

Within this section some generalized requirements are stated
that need to be provided by an Internet of Things system in
order to allow a generic user interface for creating distributed
control logic based on graphical means without any needs
for programming or scripting. In general, the different ways
to create control logic for the Internet of Things can be
divided into only script-based, graphical-based or hybrid-based

1https://xively.com/
2https://www.thingspeak.com/

approaches. Further, the control logic is executed on a central
controller or distributed amongst the devices that are involved
to fulfil the desired function. The following requirements need
to be met in order to create control logic by graphical means
only and to provide a decentralized execution: i) data point

centric information representation, ii) generic base infor-

mation model, iii) simple application layer communication

services, iv) group communication interaction model, and
v) logic and virtual entities.

III. IOTSYS: A COMMUNICATION STACK FOR THE
INTERNET OF THINGS

IoTSyS is a complete system stack designed for the Internet
of Things fulfilling the requirements stated in Section II. It
can be deployed on constrained sensors or actuators and can
also be used as integration middleware for state of the art
home and building automation technologies. Details on the
communication stack have been presented in [4].

The IoTSyS protocol stack is based on mature and novel
Internet communication protocols and Web standards. It uses
oBIX for the application layer information models which
follow a data point centric object model and simple appli-

cation layer communication services are based on a RESTful
design paradigm offering read, write, delete or invoke
protocol commands. Within IoTSyS a novel protocol binding
to CoAP and message encodings to JSON and EXI have been
created. In that way, the stack provides HTTP, CoAP and
SOAP for message exchange. A client can freely choose as
message encoding either XML, JSON, EXI or oBIX Binary.
IPv6 can be used as network layer and is required by our
group communication mechanism which cares for a peer to
peer interaction model for oBIX devices. Virtual logic objects
provide functionality that is used to create complex control
scenarios. This can range from simple numerical functions,
boolean operators to more sophisticated functions like PID
controllers.

Figure 1 illustrates an overview of the complete system
architecture. Existing home and building automation systems
are integrated into the system stack using the IoTSyS gateway,
offering oBIX communication interfaces for these devices.
Beside the connectors to sensors and actuators, also virtual

2014 IEEE World Forum on Internet of Things (WF-IoT)

978-1-4799-3459-1/14/$31.00 ©2014 IEEE 193

connectors to, for example, a weather data service, are inte-
grated into the gateway. The gateway also hosts the oBeliX
HTML5 user interface that can directly operate on oBIX
interfaces. For the user interface and for engineering the group
communication endpoints, all objects need to be hosted in
the gateway. For “native” devices that use the communication
stack in the field, a simple CoAP to HTTP proxy module
provides a virtual representation of these objects. In this
way, the complete engineering of the control logic can be
performed at the gateway but process communication happens
in a decentralized way since the group tables are stored on
the devices. For process communication, IPv6 multicasting is
used together with the CoAP binding and EXI encoding to
optimize the payload size.

Buildings Residential Homes

Low-power and lossy network
with IoTSyS nodes

IoTSyS gateway

Existing BAS appliances

[FF02:1::2]
CoAP/EXI

[FF02:1::1]
CoAP/EXI

[FF05:1::3]
CoAP/EXI

[FF05:1::3]
CoAP/EXI

Group Comm Table
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.

Group Comm Table
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.

Group Comm Table
DPT, IPv6 M. Addr.

Group Comm Table
DPT, IPv6 M. Addr.

1
2

3

Fig. 1: IoTSyS overview with oBeliX graphical user interface

IV. OBELIX: A GENERIC HTML5 USER INTERFACE AND
CONTROL LOGIC EDITOR

oBeliX is an open-source3 HTML5 control engineering
interface based on JavaScript and CSS. It is a generic oBIX
client that directly operates on the Web service interfaces pro-
vided by the gateway component. It is deployed as standalone
file served by the gateway component and uses the HTTP and
JSON protocol binding for oBIX. An 1 object browser is
the central entry point for a user as illustrated in Figure 1. It
lists the available objects based on a query using the oBIX
lobby. Since everything is an object in oBIX which may have
an arbitrary number of sub objects the structure is recursively
analyzed and an entry is displayed in the object browser based
on the name. The user can drag an element out of the browser
into the object canvas for display and to update values.

3http://code.google.com/p/iotsys

For each oBIX object in the object canvas an 2 object

component is displayed. Following the oBIX object model, an
object consists of sub objects which are either base value types
like, for example, bool, int, real, str or complex objects.
An object is rendered as component that provides HTML5
input elements for all base value types. For rendering the
object, a simple get request is performed on the object URI
and the object structure is parsed dynamically. On a change of
a base value property an according put request is performed
and the object is updated at the server side.

The object component allows a simple interaction with
devices and virtual objects represented through oBIX objects.
For engineering the 3 group communication relationships,
a graphical wire tool allows to group data points of different
objects together. Whether a data point can participate in
group communication or not is determined through a group
communication object that is attached as child object to the
basic value object. If such an object is present, connectors are
displayed that can be used to graphically wire objects using
a drag and drop mechanism. Once a connection is established
a dedicated IPv6 multicast address is added to the according
group communication objects.

For the evaluation of the control logic editor, a testbed
equipped with heterogeneous home and building automation
technologies is used and use case scenarios for lighting

control, alarming and HVAC control have been successfully
realized.

V. CONCLUSION

This paper presented a scripting-free control logic editor for
the Internet of Things by stating the general requirements to
create scripting-free control logic. Further, it was shown how
a protocol stack based on IPv6, CoAP and oBIX can fulfil
these requirements to setup scripting-free distributed control
logic.

ACKNOWLEDGEMENT

Authors express their acknowledgement to the consortium
of the project IoT6 (www.iot6.eu). The IoT6 project is sup-
ported by funding under the Seventh Research Framework
Program of the European Union, with the grant agreement
FP7-ICT-2011-7-288445 and the Internet Foundation Austria
(IPA).

REFERENCES

[1] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A RESTful
Runtime Container for Scriptable Internet of Things Applications,” in
Proceedings of the 3rd International Conference on the Internet of Things,
2012.

[2] M. Blackstock and R. Lea, “IoT mashups with the WoTKit,” in Pro-
ceedings of the 3rd International Conference on the Internet of Things,
2012.

[3] D. C. Pintus, Antonio and A. Piras, “Paraimpu: a platform for a social
Web of things.” in Proceedings of the 21st ACM International Conference
Companion on World Wide Web, 2012.

[4] M. Jung and W. Kastner, “Efficient group communication based on Web
services for reliable control in wireless automation,” in Proceedings of
the 39th Annual Conference of the IEEE Industrial Electronics Society,
2013.

2014 IEEE World Forum on Internet of Things (WF-IoT)

194

