
  

  

Abstract— The dexterous natural control of robotic prosthetic 
hands with non-invasive techniques is still a challenge: surface 
electromyography gives some control capabilities but these are 
limited, often not natural and require long training times; the 
application of pattern recognition techniques recently started to 
be applied in practice. While results in the scientific literature 
are promising they have to be improved to reach the real needs.  
The Ninapro database aims to improve the field of naturally 
controlled robotic hand prosthetics by permitting to worldwide 
research groups to develop and test movement recognition and 
force control algorithms on a benchmark database. Currently, 
the Ninapro database includes data from 67 intact subjects and 
11 amputated subject performing approximately 50 different 
movements. The data are aimed at permitting the study of the 
relationships between surface electromyography, kinematics 
and dynamics. The Ninapro acquisition protocol was created in 
order to be easy to be reproduced. Currently, the number of 
datasets included in the database is increasing thanks to the 
collaboration of several research groups. 
 

I. INTRODUCTION 

The dexterous natural control of robotic prosthetic hands 
with non-invasive techniques is a challenge that can strongly 
increase the quality of life of amputated people.  

Nowadays hand amputated subjects can rely on surface 
electromyography (sEMG) prostheses. In most cases the 
movements that the prosthesis can perform are limited to 
opening and closing but in recent years the top-level 
commercial offers started to include mechanically advanced 
prostheses that can perform several programmable 
movements relying on specific control strategies (e.g. 
sequential control strategies).  

The use of pattern recognition techniques recently started 
to be applied in practice1. This kind of approach has been 
described several times in the scientific literature (e.g. [1]–
[4]). Usually several electrodes record sEMG activity on the 
remaining arm of the subject while pattern recognition 
algorithms are used to classify the movement that the subject 
aims to perform. The average classification accuracy results 
are usually below 80-90% [1], while the highest ones can 
reach up to 90% on approximately 10 movements [2], [3].  
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Despite the excellent results described in literature, this field 
can still be improved in several ways. First, most of the 
studies include few subjects (according to our knowledge up 
to 11 intact and 6 hand amputated subjects [5]) and few 
movements (according to our knowledge up to 12 [6]), that 
make it difficult to obtain statistically relevant results. 
Second, it is not clear how clinical and experimental 
parameters related to the amputation and physiological 
phenomena can affect the natural control capability of the 
prosthesis. Finally, the movement recognition accuracy is 
never high enough to avoid misclassification on a high 
number of movements, which is the ideal result for real-life 
applications. Moreover, usually the data collections are not 
publicly available, thus different analysis methods cannot be 
compared quantitatively. In contrast with this situation, the 
usefulness of publicly available databases and benchmarking 
protocols was demonstrated repeatedly in several fields [7], 
[8], where it permitted to compare different methods and to 
push scientific progress.  

In this work we describe the Ninapro (Non Invasive 
Adaptive Prosthetics) database, which includes data acquired 
from 67 intact subjects and 11 hand amputated subjects 
while repeating several times approximately 50 hand 
movements. The data are aimed to study the relationships 
between sEMG, hand kinematics, dynamics and clinical 
parameters. The data are publicly available to worldwide 
research groups, with the final goal of fostering the creation 
of non-invasive, naturally controlled, robotic hand 
prostheses for trans-radial hand amputated subjects. The 
number of subjects is high in comparison to other datasets 
described in the field, especially considering the difficulty of 
recruiting trans-radial amputated subjects and considering 
that intact subjects can be used as a “proxy” measure for 
amputated subjects [9]. In this work we also summarize the 
results of several analyses and technical validations that 
have been performed on it and the ongoing improvements of 
the Ninapro project. 

 

II. METHODS 

A. Acquisition Setup 
The Ninapro acquisition setup includes several sensors, 
aimed to record hand kinematics, dynamics and 
correspondent muscular activity. These sensors are 
connected to the laptop responsible for data acquisition.  

The data are divided into three databases with slightly 
different sensor combinations. 
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Hand kinematics is measured using a 22-sensor CyberGlove 
II data-glove2, which detects hand movements through high-
accuracy angle measurements. 

 A 2-axis Kübler IS40 inclinometer3 is fixed on the wrist of 
the subject to measure the orientation of the wrist with a 
range of 120° and a resolution of less than 0.15°. 

Hand dynamics is measured using a Finger-Force Linear 
Sensor (FFLS) [10], which uses strain gage force sensors  to 
measure forces exerted by the fingers, including the 
adduction and abduction forces of the thumb. 

Muscular activity is measured using two configurations of 
double differential sEMG electrodes. The first one consists 
of ten OttoBock MyoBock 13E200-504, which provide a 
pre-processed, rectified version of the raw sEMG signal. 
These electrodes are already widely used in prosthetics, and 
they use frequency shielding and filtering technologies in 
order to avoid low and high frequency interferences. 

The second combination of electrodes is a Delsys Trigno 
Wireless System5, which is made of a base station and 12 
wireless sEMG electrodes. These electrodes sample the raw 
sEMG signal at a rate of 2 kHz with a baseline noise of less 
than 750 nV RMS and integrate a 3-axes accelerometer 
sampled at 148 Hz.  

The electrodes are positioned combining two methods which 
are common in the field, i.e. a dense sampling approach[6], 
[11], [12] and a precise anatomical positioning strategy [13], 
[14]. As shown in Figure 1: eight electrodes are equally 
spaced around the forearm at the height of the radio humeral 
joint; two electrodes are placed on the main activity spots of 
the flexor digitorum superficialis and of the extensor 
digitorum superficialis [15]; for the Delsys electrodes only, 
two electrodes are placed on the main activity spots of the 
biceps brachii and of the triceps brachii. 

 
2 CyberGlove Systems LLC; http://www.cyberglovesystems.com/ 
3 Fritz Kübler GmbH, http://www.kuebler.com/ 
4 Otto Bock HealthCare GmbH, http://www.ottobock.com/ 
5 Delsys Inc., http://www.delsys.com/products/wireless-emg/ 

B. Acquisition Protocol 
The subjects give informed consent and clinical information 
also regarding the amputation [16]. The experiment is 
divided into one training part and three exercises addressing 
different types of movements (Figure 2), interrupted by rest 
time in order to avoid muscular fatigue. During the 
acquisitions, subjects sit at a desk resting their arm 
comfortably on the desktop. A laptop in front of the subject 
provides visual stimuli for each movement while at the same 
time recording data from the measurement devices. The 
details of the acquisition procedure depend on the nature of 
the acquisition (kinematic or dynamic). During kinematic 
acquisitions (Figure 2, exercise A, B, C), the intact subjects 
are asked to mimic movies of movement shown on the 
screen of the laptop with their right hand, while amputated 
subjects are asked to mimic the same movements with the 
missing limb as naturally as possible (Figure 1). The set of 
movements is selected from the hand taxonomy, robotics, 
and rehabilitation literature [17]–[20]. Each movement 
repetition lasts 5s, and it is alternated with a rest posture 
lasting 3s. The sequence of movements is not randomized in 
order to encourage the subjects to perform the movements as 
naturally as possible. 

During dynamic acquisitions, the subjects repeat several 
times nine force patterns (Figure 2, exercise D) by pressing 
with one or more hand digits on the device. An initial 
calibration phase is performed to establish the rest and 
maximal voluntary contraction force levels for all fingers 
and training is performed before each force pattern. The 
force levels requested for each finger are represented as 
coloured bars on the screen. 

 

C. Signal Processing 
Signal processing steps include synchronization, relabeling 
(to realign the movement label with the real movement 
boundaries [21]) and (for the Delsys electrodes) filtering 
from power-line interference (using a 50 Hz and harmonics 
Hampel filter [21]). Original labels are included in the 
released files, while raw data are available upon request. 

Figure 1 The Ninapro acquisition protocol [22]. 

 



  

III. RESULTS 

Ninapro is currently the repository with the highest number 
of intact and hand amputated subjects in the field. It includes 
data from 78 subjects (67 intact subjects, 11 trans radial 
amputated subjects) divided into three databases. The first 
database contains data acquisitions from 27 intact subjects 
(20 males, 7 females; 25 right handed, 2 left handed; age 28 
± 3.4 years). The second database contains data acquisitions 
from 40 intact subjects (28 males, 12 females; 34 right 
handed, 6 left handed; age 29.9 ± 3.9 years). The third 
database contains data acquisitions from 11 trans-radial 
amputated subjects (11 males; 10 right handed, 1 left 
handed; age 42.36 ± 11.96 years). The experiment was 
conducted according to the principles expressed in the 
Declaration of Helsinki. It was approved by the Ethics 
Commission of the state of Valais (Switzerland), and all 
participants signed an informed consent form.  

The evaluation of the effect of experimental conditions on 
the amplitude of the signals [22] shows that there are not 
significant differences considering movement repetitions, 
while there are significant differences considering different 
subjects and movements. This makes sense because different 
subjects are characterized by different anatomical 
characteristics and because different movements involve the 
use of different muscles, thus leading to different sEMG and 
kinematic amplitudes. In previous papers [15], [22], [23], we 
evaluated the database using several state of the art 
classification methods and signal features using pattern 
recognition-based methods [24].  These results enforce the 
possibility to use the Ninapro data for movement recognition 
analysis in hand amputated subjects, in order to improve the 
field of robotic hand prostheses, and they can also offer a 
baseline for future studies on the Ninapro repository. 

The Ninapro acquisition protocol was planned in order to be 
easy to be reproduced, thus in order to foster new data 
acquisitions by other research groups. Currently, the number 
and the variety of datasets in the database is increasing 
thanks to the collaboration of several research groups. 

IV. CONCLUSIONS 

This paper describes the NINAPRO database, which aims 
at forming a standard benchmarking resource for the 
biorobotics community. At the moment of writing it is the 
only publicly available database relating sEMG to hand 
movements, it contains a much larger number of subjects and 
of hand movements in comparison to related work. The 
dataset consists of muscular activity gathered in controlled 
conditions using double differential sEMG electrodes, 
kinematic and dynamic data. So far data are available for 67 
intact subjects and 11 amputated subjects performing several 
repetitions of approximately 50 hand, wrist, and forearm 
movements. The database showed low dependence on 
experimental conditions and movement classification 
capabilities comparable to previous literature, proving to be a 
proper resource for the scientific community. The Ninapro 
acquisition protocol was created in order to be easy to be 
reproduced. Currently, the number of datasets in the database 
is increasing thanks to the collaboration of several research 
groups. Hopefully, this will continue and will help to 
improve the knowledge of the effect of different clinical and 
experimental parameters too. 
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Figure 2 Movements	  included	  in	  the	  acquisition	  protocol	  divided	  by	  exercise.	  
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