
  

  

Abstract— The natural control of robotic prosthetic hands with 
non-invasive techniques is still a challenge: myoelectric 
prostheses currently give some control capabilities; the 
application of pattern recognition techniques is promising and 
recently started to be applied in practice but still many 
questions are open in the field. 
In particular, the effects of clinical factors on movement 
classification accuracy and the capability to control myoelectric 
prosthetic hands are analyzed in very few studies. The effect of 
regularly using prostheses on movement classification accuracy 
has been previously studied, showing differences between users 
of myoelectric and cosmetic prostheses. 

In this paper we compare users of myoelectric and body-
powered prostheses and intact subjects. 36 machine-learning 
methods are applied on 6 amputees and 40 intact subjects 
performing 40 movements. Then, statistical analyses are 
performed in order to highlight significant differences between 
the groups of subjects. The statistical analyses do not show 
significant differences between the two groups of amputees, 
while significant differences are obtained between amputees 
and intact subjects. These results constitute new information in 
the field and suggest new interpretations to previous 
hypotheses, thus adding precious information towards natural 
control of robotic prosthetic hands. 

I. INTRODUCTION 

The natural control of robotic prosthetic hands with non-
invasive techniques is still a challenge in real life. Surface 
electromyography (sEMG) currently gives limited control 
capabilities. In most cases the movements that the prosthesis 
can perform are limited to opening and closing but the top-
level commercial offers can perform several movements 
usually relying on sequential control strategies. The use of 
pattern recognition techniques has been described in the 
scientific literature (e.g. [1]–[3]) and recently started to be 
applied in practice (http://www.coaptengineering.com/). 
This approach usually relies on several sEMG electrodes and 
pattern recognition algorithms to classify the movement that 
the subject aims to perform. Targeted muscular 
reinnervation [4] obtained excellent results, but this 
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technique is invasive. Non-invasive studies show 
classification accuracy up to 90% on approximately 10 
movements [2], [3] but average results are usually below 80-
90% [1].  

A considerable number of publications study the 
engineering and computational problems involved in the 
field. However, very few publications study the effects of 
the patient characteristics, while clarifying such effects can 
lead to improve the control capability through an improved 
cooperation between surgeons, therapists and amputated 
subjects. One of the few studies in the field is the one by 
Cipriani et al. [2], in which the authors analyze the effect of 
regularly using prostheses on movement classification 
accuracy by comparing 2 myoelectric hand users, 2 cosmetic 
hand users and 5 intact subjects. Statistical analysis of the 
data revealed a difference in control accuracy based on the 
type of prostheses regularly used. The mentioned paper 
showed also significant differences between cosmetic users 
and able-bodied participants, while myoelectric users and 
intact subjects were not statistically different. The 
acquisition protocol included the bilateral repetition of 7 
hand movements (3 repetitions training, 3-6 repetitions 
testing) and it was repeated three times, showing an 
improvement of the accuracy during the experiment. The 
movements were classified using as signal feature the mean 
of the absolute value (MAV) and as classifier the k-nearest 
neighbour algorithm (k-NN, with k=8 and Euclidean 
distance as the distance metric). 

In this paper we analyze the effect of regularly using 
prostheses on movement classification accuracy by 
comparing 3 myoelectric prosthesis users (myo users), 3 
body-powered prosthesis users (body-powered users) and 40 
intact subjects. The used approach and the statistical analyses 
are very similar to what was described by Cipriani et al. in 
order to make the results as comparable as possible. 36 
machine learning methods are applied on data from the 
Ninapro database1 [5], a publicly available resource including 
11 amputated subjects and 67 intact subjects performing up 
to 52 different hand movements. Statistical analyses do not 
show any significant difference between the amputated 
subjects, while significant differences are obtained between 
amputees and intact subjects. These results constitute new 
information in the field and suggest new interpretations to 
previous hypotheses, thus adding precious information 
towards natural control of robotic prosthetic hands. 

 
1 http://ninapro.hevs.ch/ 
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II. METHODS 

A. Subjects 
Six transradially amputated subjects and forty intact 

subjects participated in this study. The subjects answered to 
a questionnaire that included generic parameters (such as 
age, gender, height, weight and handedness) and the 
assessment of clinical parameters and other factors, 
including type of used prosthesis (cosmetic, body-powered, 
myoelectric), total use of the prosthesis (years of use) and 
average daily use (hours) (Table I). The amputated subjects 
are all males with average age 44.5±12.2 years. The intact 
subject group includes 28 males and 12 females, 34 right 
handed and 6 left handed with average age of 29.9 ± 3.9 
years.! The experiment was conducted according to the 
Declaration of Helsinki and it was approved by the ethics 
commission of the state of Valais (Switzerland). All 
participants signed an informed consent form.  

TABLE I.  AMPUTEES CHARACTERISTICS & PROSTHESIS USE 

Subject 

H
andedness 

A
m

putated H
and(s) 

Perform
ed M

ovem
ents 

A
nalyzed M

ovem
ents 

U
sed E

lectrodes 

Prosthesis Use 
(total, years) 

Prosthesis Use 
(daily, hours) 

C
osm

etic 

B
ody-pow

ered 

M
yoelectric 

C
osm

etic 

B
ody-pow

ered 

M
yoelectric 

1 Right Right 39 29 12 0 0 13 0 0 8 

2 Left Left 50 40 12 0 0.4 0 0 12 0 

3 Right Left 50 40 10 0 12 0 0 12 0 

4 Right Right 50 40 12 0 0 4 0 0 12 

5 Right Right 50 40 12 0 0 14 0 0 8 

6 Right Right 43 40 12 0 1.66 0 0 14 0 

 

B. Acquisition Setup and Protocol 
The data used in this paper come from the second and the 

third NinaPro database that is thoroughly described in  [5]–
[7]. The considered exercises are the first and the second 
one, including a total of 40 hand and wrist movements plus 
rest. Muscular activity is measured using 12 double 
differential sEMG electrodes (Delsys Trigno Wireless 
System). Myoelectric signals are sampled at a rate of 2 kHz 
with a baseline noise of less than 7 50 nV RMS. 

The electrodes were placed combining two methods 
which are common in the field, i.e. a dense sampling 
approach [8] and a precise anatomical positioning strategy 
[9]. Eight electrodes are equally spaced around the forearm 
at the height of the radio humeral joint; two electrodes are 
placed on the main activity spots of the muscle flexor 
digitorum superficialis and of the muscle extensor digitorum 
superficialis; two electrodes are also placed on the main 
activity spots of the biceps brachii and of the triceps brachii.  

During the acquisitions, subjects were seated at a desk 
resting their arm comfortably on the desktop. A laptop in 

front of the subject provided visual stimuli for each 
movement while at the same time recording data from the 
measurement devices. The intact subjects were asked to 
mimic movies of movement shown on the screen of the 
laptop with their right hand, while amputated subjects were 
asked to mimic the movements shown on the screen of a 
laptop with the missing limb as naturally as possible. The set 
of movements was selected from the hand taxonomy, 
robotics, and rehabilitation literature [10]–[13]. Each 
movement repetition lasted 5s, and it was alternated with a 
rest posture lasting 3s. The sequence of movements was not 
randomized in order to encourage repetitive, almost 
unconscious movements. 

C. Data Analysis 
The classification procedure is relatively standard for the 

field. We followed the setting used by Gijsberts et al. [14], 
which is based on the popular control scheme by Englehart 
and Hudgins [15] consisting of preprocessing, windowing, 
feature extraction, and finally classification. 

We considered 5 features extracted from the signals and 
9 classification methods, selected upon popularity, previous 
application to sEMG and to ensure diversity in approaches. 
Root Mean Square (RMS) is commonly used for sEMG. It is 
easily implementable and it has a strong relationship with 
the force exerted by a muscle [9]. Waveform length (WL) is 
a robust and efficient feature to analyze sEMG [16] and it 
was previously applied on the Ninapro database [17]. sEMG 
Histogram (HIST) [18] is the histogram of the time window 
given a predefined number of bins  (in this case twenty) and 
it has demonstrated excellent performance for sEMG-based 
movement classification [17], [18]. The feature was 
computed on the Ninapro database [14]. The marginal 
Discrete Wavelet Transform (mDWT) decomposes the 
signal in terms of a basis function (in this case the 7th order 
Daubechies wavelet) at different levels of resolution, 
resulting in a high-dimensional frequency-time 
representation, preserving only the marginals at each level of 
the decomposition. The feature was computed as previously 
on the Ninapro database [14]. The 5th feature was computed 
as the normalized concatenation of the others [19]. 

The used classifiers are well known, and they were 
previously applied to sEMG analysis. They include: k-
Nearest Neighbors [20] (k�[1,15]); Least Squares Support 
Vector Machines (LSSVM) [21] and Support Vector 
Machines (SVM) [22] (Radial Basis Function kernel; hyper-
parameters tuned for each subject by grid search respectively 
with multiple fold cross-validation), Random Forests [23] 
(100 decision trees), Discriminant Analysis (Linear, Naive 
Bayes Linear, Quadratic, Naive Bayes Quadratic, 
Mahalanobis) [24]. Only low-dimensional features (RMS, 
WL) were used with Quadratic, Naive Bayes Quadratic and 
Mahalanobis Discriminant Analysis due to computational 
issues (i.e., singular covariance matrix). Four movement 
repetitions (1, 3, 4, 6) were used to generate the training 
features, while the remaining two (2, 5) were used to create 
the test set.  



  

The Friedman test and the Kruskal-Wallis test with two 
and three groups were applied to compare body-powered 
users, myo users and intact subjects, similarly to what 
performed in previous literature (Cipriani et al. [2]). Each 
feature-classifier combination was tested separately. 
Bonferroni correction was used in comparisons involving all 
the three classes. 

III. RESULTS 

The average classification accuracy and standard 
deviation for each of the three groups are reported in Table 
II. The highest classification accuracy for amputees is 
54.59%, which corresponds to 21.8 times the chance level.  

The Friedman test (performed also by Cipriani et al. [2]) 
and the Kruskal-Wallis test do not show any significant 
difference between myo users and body-powered users with 
any feature-classifier combination. 

The Kruskal-Wallis test with Bonferroni correction for 
multiple comparisons was also performed to compare myo 
users, body-powered users and intact subjects, highlighting 
significant differences (p<0.05) between amputated and non-
amputated subjects for each of the 36 feature-classifier 
combination, but to no significant differences between body-
powered and myo users and users. 

 

IV. CONCLUSIONS 

This work has impact on the field of sEMG controlled 
dexterous hand prosthetics. In particular, it suggests that 
factors different from myoelectric use can also affect 
classification accuracy, thus obfuscating in some cases the 
significant effects of myoelectric prosthesis use. 

The highest accuracy for amputated subjects is 54.59%. The 
result can seem lower than other studied analyzing fewer 
classes but it is definitely not considering the very low 
chance level (2.44%) due to the high number of classes. In 
particular, the ratio between the accuracy and the chance 

level is 22.37 in the reported case, while previous results 
described in literature for similar tasks are, for example, 8.5 
(10 movements, accuracy 84.4% [25], 10.56 12 movements, 
accuracy 87.8% [8]). A more extended explanation of this, is 
described in Atzori et al. 2014 [5]. 

TABLE II.  MOVEMENT CLASSIFICATION ACCURACY (%) 

Classifier Feature Body-powered Myo Intact 

SVM 

All 45.49±7.38 54.59±11.10 70.58±7.60 
HIST 44.30±7.20 53.27±11.84 68.94±8.57 
RMS 41.93±10.75 53.19±10.69 66.10±7.43 
WL 42.56±8.01 53.62±10.18 67.88±7.50 

mDWT 41.68±9.76 49.74±11.08 63.84±7.33 

LSSVM 

All 43.12±7.37 52.92±12.52 69.40±7.92 
HIST 41.50±7.97 51.57±12.27 67.34±8.60 
RMS 36.98±9.12 48.55±11.97 63.78±8.36 
WL 37.33±7.16 49.01±10.95 65.59±8.33 

mDWT 40.38±10.71 49.49±12.47 64.69±7.42 

Random  
Forests 

All 43.69±7.97 54.59±10.57 68.72±7.33 
HIST 41.09±6.53 51.44±11.09 66.50±7.77 
RMS 41.37±8.13 52.92±10.02 66.21±7.74 
WL 40.21±7.71 52.37±10.15 66.80±7.83 

mDWT 40.71±7.08 51.90±10.71 65.81±7.47 

k-nn 

All 36.21±6.97 46.36±10.70 63.24±9.01 
HIST 36.55±7.13 46.35±10.82 64.11±9.49 
RMS 36.08±10.82 46.86±10.56 61.19±8.23 
WL 36.39±9.04 46.77±10.30 62.81±8.43 

mDWT 26.34±4.13 33.92±8.63 48.06±6.88 

Linear 

HIST 38.83±10.00 42.54±7.95 55.16±8.04 
RMS 30.65±13.42 29.44±5.60 41.50±6.69 
WL 31.04±12.03 29.47±5.77 42.66±6.97 

mDWT 37.90±12.82 39.34±8.19 53.36±6.60 

Naive  
Bayes  
Linear 

HIST 27.64±12.38 23.38±8.29 37.73±7.35 
RMS 27.97±12.02 23.22±8.60 37.89±7.69 
WL 25.33±13.51 20.98±7.51 33.24±6.79 

mDWT 24.93±12.36 21.32±6.84 33.29±6.80 

Quadr. RMS 21.37±7.80 18.75±6.21 31.01±6.07 
WL 36.53±11.24 45.90±10.93 59.14±7.90 

Naive  
Bayes  

Quadr. 

RMS 36.77±9.13 46.66±10.24 61.29±7.66 
WL 25.63±10.72 25.38±8.31 39.13±7.88 

mDWT 25.36±8.21 25.31±8.50 39.39±7.81 

Mahal. RMS 21.74±6.47 21.93±7.56 34.16±7.06 
WL 33.20±10.85 41.09±9.21 52.87±8.07 

 

Figure 1: Examples of classification accuracies for myo-electric users, body-powered users and intact subjects with several classifiers (a. k-nearest 
neighbour, b.random forests and c. support vector machines) and several features (a. root mean square, b. all features, c. waveform length). The central 

mark in the boxes is the median; the edges of the box are the 25th and 75th percentiles; whiskers extend to approximately 2.7 times the standard deviation. 
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The statistical analyses do not show significant differences 
between users of myoelectric prosthesis and users of body- 
powered prostheses, while significant differences are 
obtained between the groups of amputees and intact subjects. 
This result is particularly interesting if considered together 
with the results by Cipriani et al. [2], that showed significant 
differences between users of myoelectric prosthesis and 
users of cosmetic hand prostheses, as well as the statistical 
equality of myoelectric users and intact subjects. 
Our results do not confirm the statistical equality of 
myoelectric users and intact subjects described by Cipriani, 
and they do not even show a non-significant trend. However, 
visual inspection of the results (e.g. Figure 1) often shows 
that myo users are closer to intact subjects than body-
powered users. This is similar to what obtained by Cipriani 
if we assimilate body-powered users to cosmetic users (since 
both the groups are not trained to use the finger muscles 
located in the remaining forearm). With few subjects 
statistical significance can be reached easily, since one 
strong result can influence this, so studies with a larger 
group of persons would seem necessary. 

The differences between the two studies can be due to 
differences among the subjects, the acquisition protocols and 
the analyses. In particular, since the Ninapro acquisition 
protocol lasts approximately 1.5 hours, the body-powered 
users could get trained during the experiment, thus reducing 
their difference from myo users, as described by Cipriani and 
confirmed by the comments of several amputated subjects 
who participated to the experiment. Our hypothesis 
(suggested also by preliminary analyses on the eleven 
amputated subjects included in the third Ninapro database) is 
that movement classification accuracy can be strongly 
influenced by several factors, including clinical 
characteristics of the amputation and training. Further studies 
considering the effect of clinical parameters on the entire 
third Ninapro database are currently under peer review. 
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