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Abstract—In this paper we propose MCOV, a covariance-
based descriptor for the fusion of shape and color information
of 3D surfaces with associated texture aiming at a robust
characterization and matching of areas in 3D point clouds.
The proposed descriptor is based on the notion of covariance
in order to create compact representations of the variations
of texture and surface features in a radial neighbourhood,
instead of using the absolute features themselves. Even if this
representation is compact and low dimensional, it still offers
discriminative power for complex scenes. The codification of
feature variations in a close environment of a point provides
invariance to rigid spatial transformations and robustness to
changes in noise and scene resolution from a simple formulation
perspective. Results on 3D points discrimination are validated
by testing this approach performance on top of a selected
database, corroborating the adequacy of our approach on the
posed challenging conditions and outperforming other state-
of-the-art 3D point descriptor methods. A qualitative test
application on matching objects on scenes acquired with a
common depth-sensor device is also provided.

Keywords-3D shape descriptors; covariance feature fusion;
3D scene analysis

I. INTRODUCTION

The description, detection and matching of points from
complex scenes is a challenging task for many Computer
Vision applications such as visual tracking, object modelling
and recognition or scene reconstruction. Existing approaches
make use of the available cues in the usual two channels of
information: visual photometry such as color or texture, and
shape and depth information from 3D sensors. State-of-the-
art methods have provided successful outcomes in both areas
separately. However, our goal is to provide a global method
which can fuse information from both two worlds.

This paper focuses on the definition of the compact but at
the same time descriptive capability of covariance matrices
of feature variations. Encoding the correlating degrees be-
tween different texture and shape features together within a
3D point neighbourhood is more descriptive than using abso-
lute features themselves, as in current histogram or keypoint-
based approaches. This makes our fusion covariance descrip-
tor adequate to avoid ambiguities in point matchings, and
adds robustness to rigid spatial transformations, noise and
resolution variations. The statistical nature of covariance also

provides some added benefits to the descriptor: we provide
an associated methodology for the analysis of salient points
of the scene and for the estimation of the neighbourhood
sampling radius of the descriptor. Last but not least, the
MCOV covariance descriptor lays on a specific manifold
topology, which makes that similar 3D scene points stay
close in the descriptor space. Therefore, we propose that the
comparison of descriptors for scene points matching can be
performed by an adequate manifold metric.

II. RELATED WORK

Image processing applied to 3D data is currently an
active topic in the computer vision literature. Advances in
sensor technology have provided some affordable devices
and acquisition techniques that make possible the capture
of 3D information to a wider audience. This easy access
to the capture technology has also produced an increase in
the processing proposals for this kind of images during last
years.

In the concrete context of 3D registration, a possible
procedure is the use of the information obtained from a
visible camera, previously calibrated with a range scan-
ner, extracting information from the more well-known and
deeply studied 2D image domain. The most usual method
in order to match correspondences between two 2D images
is undoubtedly the SIFT algorithm [1]. While SIFT is able
to cope with small differences in the point of view, different
methods which add partial 3D information to the SIFT
algorithm are proposed in works as [2], [3], [4], estimating
the surface normal at the 3D coordinate and performing a
homography of the visible image as it would be seen from
the front side of the keypoint.

On the other side there exist also descriptors which use
exclusively the 3D information from the scene. Inside this
category, Spin Images [5] (or related variants as [6]) are
probably the most known method, encoding the neighbour-
hood of each 3D point in a 2D image. Other popular
3D descriptors are the point signatures [7], the 3D shape
contexts [8], THRIFT [9] or, more recently, the Fast Point
Feature Histograms [10].



Finally, during last years some descriptors which encode
simultaneously information from the 3D shape and the tex-
ture have been published in the literature. A good example is
the MeshHOG descriptor [11], which performs a histogram
of gradient of the neighborhood of a 3D point by using sepa-
rately the texture information and the 3D curvature. In order
to include both cues in the final descriptor, both representa-
tions can be directly concatenated. This same methodology
is used from the authors of the CSHOT descriptor [12],
which concatenates their SHOT descriptor [13] and the color
information. Other contributions as Heat Kernel Signatures
[14] follow a perspective which is closer to the one presented
in this paper, and use manifold embedding procedures where
photometric information is implicitly encoded as part of the
coordinate projection parameters.

III. MCOV: FUSION OF SHAPE AND TEXTURE
INFORMATION.

The method proposed in the present paper is focused on
the combination of the visible and the 3D information in
an implicit fusion and correlation analysis way, which is
provided by means of the statistical concept of covariance.
Covariance matrices in the Computer Vision domain where
first used as descriptors by Tuzel et al. [15], [16] for the
detection of objects and faces. They were proposed as a
robust 2D color region estimator as the representation of
variations amongst several color features, losing structural
information and being robust to noisy inputs by construction,
was shown to be more discriminative than encoding absolute
features themselves. This framework has been extended to
3D surface description in few occasions: Fehr et al. [17]
explore several shape measures which include the angular
measures initially provided by Spin Images [5], or the nor-
mal vector directions at each point of the 3D scene, amongst
others. Recently, Tabia et al. [18] have proposed a similar
descriptor where features are based on direct point euclidean
distances within the descriptor construction neighbourhood.
Our descriptor approach is different in two aspects: on one
hand, we integrate the addition of color features with shape
measures for the fusion of texture information within the
descriptor neighborhood. In a second place, for the definition
of surfaces we propose a set of three angular features which
are robust to rigid spatial transformations, noise and density
variations due to their locally relative extraction, compared
to the aforementioned approaches.

A. Feature fusion

The statistical notation of covariance is a measure of
how several random variables change together and captures
the intrinsic correlation between sampling distributions of
the involved cues. In the context of a descriptor definition,
the observed random variables are related to the set of
observable features which can be extracted from points and
their close localities in the scene, e.g. pixel color values, 3D

Figure 1. Schema of the used features for shape information encoding. For
each pi in the neighbourhood of p, α, β and γ are the rotational invariant
angular measures.

coordinates, first or second order derivatives, etc. We define
a feature selection function Φ(p, r) for a given 3D point p
and its neighbourhood within spatial radius r in the scene:

Φ(p, r) = {φpi , ∀pi s.t. |p− pi| ≤ r} (1)

where φpi is the vector of random variables obtained at each
one of the points pi within the radial neighbourhood, and is
defined as φpi = (Rpi , Gpi , Bpi , αpi , βpi , γpi , ).

This feature selection function includes the following
observations that are computed relatively to the point for
which the descriptor is being obtained: first of all, the visual
information is taken into account in terms of R, G and B
color space values. This values are enough for capturing
texture and visual pattern information, but they could be
easily changed to any other color space magnitudes, or
obtained after a color invariance pre-processing stage -this
is beyond the scope of the current approach and could be
explored as future work.
α, β and γ values are angular measures which encode

the surface information of the points within the descriptor
center neighbourhood in the following way:
• α is the angle between the normal vector in p and the

segment from p to pi, and encodes the global concavity of
the surface regarding the center of the descriptor.
• β is the angle between the same segment and the

normal vector in pi, and measures the local curvature at
this point in the neighbourhood relative to the center p.
• γ is the angle between both normal vectors in p and

pi. Being a 3D angle, it helps encoding the local surface
curvature in a non-ambiguous way.

Note that these angular measures are different from the
ones proposed by Spin Images [5] or Fehr et al. [17]. In
Figure 1 we show a schema of how these measures are
obtained. All features are normalized in order to have an
equivalent range both for angular and color measure.



Then, for a given point p of the scene the covariance
descriptor for a radius r expressing the correlation of the
defined cues can be obtained as:

Cr (Φ(p, r)) =
1

N − 1

N∑
i=1

(φpi − µ) (φpi − µ)
T (2)

where µ is the vector mean of the set of vectors {φpi} within
the radial neighbourhood of N samples.

The resulting 6×6 matrix Cr will be a symmetric matrix
where the diagonal entries will represent the variance of each
one of the feature distributions, and the non-diagonal entries
will represent their pairwise correlations. Figure 2 shows
an example of a covariance descriptor. The abstract and
compact notation of MCOV provides a representation which
treats the observed features as samples of joint distributions:
the structure information about the number of points and
their ordering within the region it defines is lost during the
construction of the descriptor. This is a desired advantage
of the presented descriptor, as feature distributions will
preserve their characterization even under changes of scale
and rotation in data. Furthermore, this makes our descriptor
robust to changes of resolution: according to central limit
theorem, as long as a significant enough number of samples
of the features distribution is used, this distribution will be
correctly characterized within a certain confidence interval.
Finally, noisy observations are also tolerated by the own
nature of the covariance formulation, as outlier features are
attenuated thanks to the mean subtraction during description
computation. These characteristics of MCOV yield to a
valuable discriminative performance boost in comparison to
more rigid representations such as keypoint or histograms-
based approaches.

B. Scene analysis from MCOV descriptors

Being covariance matrices, MCOV descriptors lay in
the manifold of symmetric positive definite matrices. This
spatial variety is of meaningful importance, as 3D regions
sharing similar texture and shape characteristics will remain
under close distances on the descriptor space. There exist
several approaches for comparing symmetric positive defi-
nite matrices. Most of them are specifically focused on the
retrieval of matrix similarities on close neighbourhoods [19],
[20], fact which must consider prior knowledge about the
different spatial clusters on the descriptor space. However,
for a general descriptor comparison, we propose the use of
the manifold metric defined by Förstner in [21]. This dis-
tance definition preserves the global geometric relationship
of the descriptors as the involved generalized eigenvalues
between two covariance matrices express the magnitude
of their geodesic distance, respecting the curvature of the
manifold:

δ(C1
r , C

2
r ) =

√√√√ 6∑
i=1

ln2λi(C1
r , C

2
r ) (3)

where λi
(
C1, C2

)
is the set of generalized eigenvalues of

C1 and C2 according to their dimensionality d (d = 6 in
our feature selection function).

In a second place, we propose a procedure for an accurate
radius estimation according to the nature of the scene for
which descriptors are being obtained. The sample mean is
a good estimator of the population of a random variable
distribution and its sampling size parameter, in order to lay
within a confidence interval, is modelled by Chebyshev’s in-
equality: P

(
| X̄ − µ |≥ ε

)
≤ σ2/ε2n, where µ and σ2 are the

mean and variance of the distribution we are considering; X̄
is the sample mean according to the number of samples n we
are observing; and ε is the threshold on data representation.
Therefore we can generalize the following expression for an
arbitrary feature distribution: n ≥ σ2/ε2 (1− p) where p is
the desired confidence value. Usually we will use a threshold
value ε = 0.1 and a confidence interval of p = 0.95. This
will provide a lower boundary of the needed number of
samples n.

Relating this to our framework, we can obtain the sam-
pling distributions of features along the whole scene whose,
and then apply this boundary equation for each one of the
feature distribution variances. This will define a set of 6
candidate sampling sizes, one for each cue. As this provides
a lower boundary, we will keep the maximum value of all the
candidate sizes, indicating the number of samples needed for
assuring that descriptors encode correctly the scene feature
distributions with a confidence of p = 95%. We have found
that this scene-dependant methodology provides accurate
estimations for a discriminative behaviours of MCOV de-
scriptor, as validated in our experiments. As an example, on
scenes with different variations of shape and color and a
density of 20000-30000 points, this estimation reflects the
need of taking around 400-500 samples. This sampling size
can be directly translated to a radius magnitude according
to the density of the scene point cloud.

In a third place, covariance matrices can be also un-
derstood as salient point detectors. As defined after eq.
(2), a covariance matrix Cr contains the variance of the
observed features on its diagonal, and the covariance on the
other entries. Computing the determinant of a covariance
matrix is equivalent to obtaining the so-called generalized
variance, which can be interpreted as a measure of the
degree of homogeneity of each point in the scene [22]. As
the used features have been previously normalized, there is
no range variation which could interfere on this analysis.
The points with higher determinant magnitudes on their
associated descriptors can be identified as the points which
belong to real interest areas, with inner significant variation



Figure 2. The left image shows the original 3D scene where a radial neighbourhood for computing the descriptor is coloured. The 6 central subfigures
show the different used features, in terms of color (upper row) and shape description (bottom row). The resulting 6x6 covariance descriptor is represented
in the right side.

in visual texture and 3D shape changes. It is worth to notice
that these interest points are selected implicitly from a global
point of view, combining both visual and shape saliency.
Therefore, even in the case of an homogeneously coloured
object like the one in Figure 3, keypoints are still obtained
on significant parts such as eye holes or borders. Due to the
nature of the used descriptor neighbourhood, relevant points
tend to form small clusters, which could be further reduced
with relevance sampling procedures like [23]. This property
is commented for computational efficiency on big datasets
and a further analysis is beyond the scope of this approach
at its current stage, and left as future work.

Finally, as computing covariance descriptors does not
involve any major operation, it is easy to extend them to
a multi-scale framework by just adding several radius mag-
nitudes for the neighbourhoods around the descriptor center
point. Therefore, each point in the scene will receive not
one, but a set of descriptors: CM (p) = {Cr (Φ(p, r)) , ∀r ∈
{r1..rs}} The idea behind using several neighbourhood radii
is that discrimination performance can be improved if a
point is supported by more than one descriptor, regarding a
narrow to coarse set of surrounding areas. This can help to
avoid repeatability problems and improve detection of points
in edges or borders of scene objects. If needed, standard
scale-space methodologies [24] can be used in order to
determine the different radius factors in conjunction with
the aforementioned radius estimation procedure.

IV. EXPERIMENTAL RESULTS

In order to compare the performance of the proposed
method against other state-of-the-art approaches we provide
a dataset combining 3D shape with visual information in
12 scenes which have been obtained using Autodesk 123D

Figure 3. This figure shows the 1500 most significant points of a scene,
according to the proposed generalized variance analysis. Even if the color
information of the object is homogeneous, interest points have been detected
on salient areas of the scene.

Catch 1 3D modelling software. These models are stored
as 3D meshes with photometric texture, where each vertex
has a unique identifier in order to provide an unbiased
groundtruth of labelled points. See Figure 4 for a visual
representation of the 12 base models used. This dataset can
be publicly accessed upon request by contacting the authors
on the header of this paper. The contained objects have
been particularly selected in order to include challenging
handicaps as repeated areas, homogeneous surfaces and
textures, and symmetries.

1http://www.123dapp.com/catch



Figure 4. 3D plot of the 12 models included on the database. Full scenes are shown without added noise.

A. Descriptor comparison against noise and resolution vari-
ations

In order to test the descriptor performance, we will com-
pare our MCOV Descriptor approach against the state-of-
the-art methods MeshHOG [11], CSHOT [12] and Textured
Spin Images [6] -which is a variation of the original Spin
Images approach [5], still considered one of the classical
3D descriptors in the literature for successful matching of
dense scenes. The compared descriptor approaches are used
following the original implementation by their authors, and
any needed parameter (radius, bin sizes) is set according
to the recommendations of their original proposals -or to
equivalent values regarding our approach in order to provide
the most fair comparison as possible.

We have performed a cross-validation test, using 10 folds
containing 10% of the number of points on each scene.
Points are labelled in each model in the database, therefore
we can compute the descriptor similarities regarding the
same points on a variation of the model. The variation
includes: i) an arbitrary rotation, ii) an arbitrary translation,
and iii) an addition of noise to color and surface coordinates.
Noise levels will follow different Gaussian noise distribu-
tions with standard deviations according to 2, 4, 6, 8 or 10%
of each one of the data channels. The evaluation method
consists of observing the amount of false and true positives,
and false and true negatives, in terms of matching scene
points by their according descriptor similarity measures.
For our descriptor, we will use the metric defined in eq.
(3). According to a ratio parameter we consider as true
positives all those matches which are within the boundaries
of ratio times the best similarity of this set of candidates.
For each level of noise we move the ratio coefficient within

a range of 1 to 5 and we obtain a set of ROC curves as
exemplified in Figure 5. This is useful for comparing the
behaviour of the different tested descriptors under all noise
variations, for each one of the twelve available models. For
a numerical comparison between these curves, their Area
Under the Curve (AUC) measure can be obtained. This
allows to numerically summarize the average performance
of the four tested descriptors over all the models in our
database, as seen in Table I.

n002 n004 n006 n008 n010
MCOV 0.991 0.976 0.961 0.953 0.917
CSHOT 0.992 0.913 0.758 0.616 0.562
MeshHOG 0.963 0.819 0.704 0.607 0.577
TextSpinImg 0.750 0.614 0.615 0.564 0.533

Table I
AVERAGE AUC MEASURES FOR 12 MODELS, 100% VS 100%

RESOLUTION, FOR 5 LEVELS OF NOISE.

According to the results, we can see how the proposed
MCOV descriptor is more stable regarding the increases on
the noise levels. Since other methods are working with local
surface neighbourhoods and 3D coordinate histogram repre-
sentations, they will quickly suffer this distortion on data,
i.e. at bin discretisation. Textured Spin Images are clearly
affected by color variance as the color sparsity is saturating
the illuminant binning component of that descriptor. This
was in fact identified as a possible drawback by their own
authors in [6]. This puts into evidence the benefits of the
statistical representation of the proposed MCOV descriptor,
both for naturally attenuating noise effects and for fusing
several cues of information in a flexible manner.

The same experiment has been also conducted by applying
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Figure 5. ROC curves for the performance comparison of the four tested approaches. Two upper rows depict the test on two different scenes for 100%
vs. 100% resolution evaluation, while two bottom rows show the same scenes for 100% vs. 50% resolution evaluation. Each column shows the behaviour
of the descriptors under different levels of additive noise over data (2, 4, 6, 8 and 10% of the standard deviation of color and surface coordinates).

n002 n004 n006 n008 n010
MCOV 0.984 0.967 0.924 0.871 0.812
CSHOT 0.906 0.823 0.668 0.614 0.597
MeshHOG 0.616 0.597 0.522 0.517 0.521
TextSpinImg 0.662 0.613 0.563 0.534 0.520

Table II
AVERAGE AUC MEASURES FOR 12 MODELS, 50% VS 100%

RESOLUTION, FOR 5 LEVELS OF NOISE.

a resolution variation over the models. The aim is to test the
performance of descriptors when matching original models
against a down-sampled variation to a 50% of their point
cloud density. This down-sampling procedure is applied by
randomly suppressing samples over the point clouds. Table II
reflects the associated average AUC measures for these tests.
The corresponding ROC curves to the Baboon and Hedwig
models for an easier visualization of descriptor performance
are plotted in the two bottom rows of Figure 5. Results
suggest this is a more challenging experiment, as data
is highly altered. Nevertheless, the statistical basis of our
descriptor is valuable again in terms of resolution robustness:

as long as a large enough number of samples is preserved,
fact which we are assuring, covariance will still encode
the underlying characteristics of feature distributions. In the
other evaluated descriptors the changes on data resolution
will incur on a bigger descent of their performance. A
special consideration must be taken into account in the
MeshHOG method, which requires mesh faces information
in order to compute its descriptor. The applied resolution
down-sampling implies the computation of an equivalent
triangulation by using the edge collapse procedure [25]. This
dependence has a drastic impact on MeshHOG performance
as results depict.

In any case, from these experiments one can also conclude
that even if a descriptor can be reliable at representing a
given area, the presence of false positives could also be due
to other unavoidable causes as the possibility of repetitions
of visual patterns or surfaces in the scene. This puts into
consideration the need of some sort of global mechanism
which must be capable of finding these artifacts and filter
out the non-positive matches according to global constraints
such as geometric consistence. This can lead to future work
in defining an accompanying method for taking into account



holistic scene aware observations.

B. Real-data matching qualitative evaluation

In this experiment we propose to test the descriptor in
the context of scenes acquired with a Microsoft Kinect
device. While the lack of a direct groundtruth information
converts this set-up in a qualitative evaluation, it still justifies
several benefits of our proposal: the usage of real data
can validate our statement about the performance of the
MCOV descriptor against noise and resolution changes (in
this case, caused stochastically by the acquisition sensor). In
a second place, we validate the application of our method
under practical conditions like computational feasibility, or
description of differently shaped objects -from planar to
round. And finally, we provide an example of broadening the
scope of our approach to areas such as scene understanding
or object indexing.

We use objects and scenes from the publicly available
RGB-D dataset presented in [26]. The goal is to perform
a 3D object searching task: segmented objects available
also on the dataset will be used as query instances to be
found within the whole scenes, where they will be mixed
with clutter elements and altered by changes on resolu-
tion, spatial transformations or incomplete views. Using a
RANSAC standard implementation [27] we seek a spatial
transformation between matches of the query instance and a
set of geometrically coherent points in the whole scene. The
spatially translated points from the query model regarding
the whole scene will be considered as identifiers for the
object segmentation points which will indicate the presence
of the element in the scene. We have used 4 different
cluttered scenes and 10 different query objects from the
aforementioned dataset, with different shape and texture
distributions. Qualitative results are shown in Figure 6.

This experiment has been conducted in an Intel Core
i5 computer with 4Gb of RAM. As stated before, the
implementation of the proposed approach does not pose
major computational demands, and for the models in the
database which have a density ranging from 80000 to 90000
points the whole descriptor calculation time takes around 50
seconds in a prototype, non-optimized implementation.

V. CONCLUSIONS

In this paper we have presented a novel descriptor specif-
ically aimed at fusion of 3D shape and visual information
under spatial transformations and changes in noise and
scene resolution. The main benefit of the presented MCOV
descriptor lays on the compact, yet discriminative repre-
sentation present in encoding feature variations rather than
rigidly represent features themselves. In a spatially close
neighbourhood, this representation is robust to rigid spatial
transformations and changes due to noise or resolution
alterations. Experimental results have validated the discrim-
inative capability of MCOV, which outperforms other state-

of-the-art methods, specially in the case of noise over data
or density variations. The analysis of several aspects of the
descriptor also open the door to interesting future work, as a
deep study of additional color features, geometric properties,
or complementary constraint methods for globally scene
understanding in object registration or recognition.
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“Recognizing objects in range data using regional point
descriptors,” in European Conference on Computer Vision,
ECCV, 2004, vol. 3023, pp. 224–237. 1

[9] A. Flint, A. R. Dick, and A. Van Den Hengel, “Thrift: Local
3d structure recognition.” vol. 7, 2007, pp. 182–188. 1

[10] R. Rusu, N. Blodow, and M. Beetz, “Fast point feature
histograms (fpfh) for 3d registration,” in International Con-
ference on Robotics and Automation, ICRA. IEEE, 2009,
pp. 3212–3217. 1

[11] A. Zaharescu, E. Boyer, and R. Horaud, “Keypoints and local
descriptors of scalar functions on 2d manifolds,” International
Journal of Computer Vision, IJCV, vol. 100, no. 1, pp. 78–98,
2012. 2, 5

[12] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-
shape descriptor for enhanced 3d feature matching,” in In-
ternational Conf. on Image Processing. IEEE, 2011, pp.
809–812. 2, 5



Figure 6. Results from the experimental setup performed on top of the RGB-D dataset. Top row shows four of the provided scenes. Bottom row depicts
the results of our proposed query search method: for clarification we plot the depth map point cloud in grayscale and the found instances of different
objects in solid colours.

[13] ——, “Unique signatures of histograms for local surface
description,” in European Conf. on Computer Vision, 2010,
vol. 6313, pp. 356–369. 2

[14] A. Kovnatsky, M. M. Bronstein, A. M. Bronstein, and R. Kim-
mel, “Photometric heat kernel signatures,” in Scale Space and
Variational Methods in Computer Vision. Springer, 2012, pp.
616–627. 2

[15] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast
descriptor for detection and classification,” European Conf.
on Computer Vision, pp. 589–600, 2006. 2

[16] ——, “Pedestrian detection via classification on rieman-
nian manifolds,” Pattern Analysis and Machine Intelligence,
vol. 30, no. 10, pp. 1713–1727, 2008. 2

[17] D. Fehr et al., “Compact covariance descriptors in 3d point
clouds for object recognition,” in International Conference on
Robotics and Automation, ICRA, 2012, pp. 1793–1798. 2

[18] H. Tabia, H. Laga, D. Picard, and P.-H. Gosselin, “Covariance
descriptors for 3d shape matching and retrieval,” CVPR, 2014.
2

[19] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-
euclidean metrics for fast and simple calculus on diffusion
tensors,” Magnetic resonance in medicine, vol. 56, no. 2, pp.
411–421, 2006. 3

[20] A. Cherian, S. Sra, A. Banerjee, and N. Papanikolopoulos,
“Jensen-bregman logdet divergence with application to effi-
cient similarity search for covariance matrices,” IEEE Trans.
on PAMI, vol. 35, no. 9, pp. 2161–2174, 2013. 3

[21] W. Förstner and B. Moonen, “A metric for covariance matri-
ces,” Quo vadis Geodesia, pp. 113–128, 1999. 3

[22] S. S. Wilks, “Certain generalizations in the analysis of vari-
ance,” Biometrika, vol. 24, no. 3/4, pp. 471–494, 1932. 3
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