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ABSTRACT

Our aim is to optimize wavelet–based feature extraction for
differentiating between the classical versus atypical pattern of
usual interstitial pneumonia (UIP) in volumetric CT. Our pro-
posal is to act on the bandwidth of steerable wavelets while
maintaining their tight frame property. To that end, we de-
signed a family of maximally localized wavelet pyramids in
3–D for a continuously adjustable radial bandwidth [Ω, π],
Ω ∈ [π/4, π/2]. The proposed wavelets are coupled with
a rotation–covariant directional operator based on the Riesz
transform, which provides characterizations of the organiza-
tion image directions independently from their local orienta-
tions. The influence of the wavelet bandwidth on the clas-
sification performance was found to be large with area un-
der the receiver operating characteristic curve (AUC) values
in [0.784, 0.921]. This demonstrated the importance of find-
ing the minimum spatial support of the wavelet required to
leverage the wealth of morphological tissue properties in the
vicinity of the lung boundaries.

Index Terms— 3–D texture analysis, steerable wavelet
pyramids, interstitial lung diseases.

1. INTRODUCTION

Texture analysis has been identified as the most promising
approach to best leverage multi–dimensional morphological
properties of biomedical tissue in radiological images [1]. It
yields exhaustive, comprehensive and reproducible analysis
of imaging features that are difficult to recognize with the
naked eye in more than two dimensions. Local tissue struc-
tures are best modeled in terms of the multi–scale characteri-
zation of the organization of local image directions [2]. This
requires the use of multi–scale image operators that are di-
rectional and can be locally oriented to normalize the distri-
bution of image directions between all tissue samples mea-
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sured in a neighborhood [3, 4, 5]. Only few families of op-
erators possess these properties. Among them are rotation–
invariant local binary patterns and spherical harmonics [5],
Gaussian Markov random fields [4], and steerable wavelet
pyramids [6, 7, 3].

The characterization of biomedical texture properties is
tightly bound to the uncertainty relation for resolution in
space, spatial frequency and orientation. The image opera-
tors need to be as localized as possible in space to capture
local tissue properties and avoid the influence of surround-
ing objects (e.g., organ boundaries, vascular structures, see
Fig. 1). On the other hand, the wealth of local texture infor-
mation increases with the size of the texture operators used.
It is therefore fundamental to optimize this trade–off in the
context of a given medical application domain.

The optimization of this trade–off is of paramount im-
portance for the automated differentiation of classic versus
atypical usual interstitial pneumonia (UIP) in volumetric
CT. The classic CT appearance of UIP is characterized with
basal– and peripheral–predominant reticular abnormality and
honeycombing [8]. An accurate characterization of the UIP
pattern requires to first identify local alterations of the lung
parenchyma, including reticulation, ground glass and honey-
combing. The latter are characterized by local morphological
distortions of the lung parenchyma. Second, the tissue types
must be located in the lung anatomy (e.g., lung bases and pe-
riphery), since their presence only is not specific to the classic
UIP pattern [9]. The image operators must therefore have a
spatial support that is large enough to differentiate the tissue
types and yet small enough to reduce the influence of the lung
boundaries in both basal and peripheral regions (see Fig. 1).
The current approach for identifying the classic UIP pattern
in CT is to achieve multidisciplinary consensus of clinicians
and radiologists with extensive experience in interstitial lung
diseases. Additionally, a surgical biopsy is often required to
confirm or reject the diagnosis. The procedure is invasive,
costly and not without significant associated risks in patients
with possible UIP.



Fig. 1. Influence of nearby objects (e.g., lung boundaries) on
local multi–scale texture properties in peripheral regions.

The contribution of this work is to extend the method pro-
posed in [10] to 3–D to design a family of wavelet of max-
imally localized wavelet pyramids over the radial bandwidth
[Ω, π] for Ω ∈ [π/4, π/2]. The tuning of the radial band-
width of the steerable wavelet pyramid is used to optimize
the trade–off between the spatial support of the wavelets and
the wealth of the texture information modeled. The optimiza-
tion of the wavelet bandwidth is coupled with the alignment
of Riesz operators to maximize their local energy. This al-
lows characterizing the multi–scale organization of image di-
rections independently from their local orientation (referred
to as “rotation–covariance” [12, 3]). The medical objective
of this work is to provide reliable and reproducible computer-
ized assistance for the identification of the UIP pattern in less
specialized practice centers without access to experts experi-
enced in interstitial lung disease. Nevertheless, reduction of
invasive biopsies is desired when possible to reduce costs and
avoid unnecessary morbidity in UIP patients.

2. MATERIAL AND METHODS

2.1. Patients

33 patients from Stanford Hospital and Clinics with biopsy–
proven UIP were retrospectively reviewed in consensus by
two thoracic radiologists with more than 15 years of expe-
rience. Based on the American Thoracic Society evidence–
based guidelines for CT diagnosis [8], 15 cases were iden-
tified as having a classic UIP pattern and 18 were atypical.
A volumetric CT scan was available for each patient, which
was acquired within the year of the biopsy proven diagnosis
of UIP. All volumes were resampled to have isotropic voxels
of 0.59× 0.59× 0.59mm3 using cubic spline interpolation.

2.2. Rotation–covariant texture analysis

2.2.1. 3–D Riesz–wavelet frames

3–D multi–scale Riesz filterbanks are used to characterize the
local volumetric texture properties of the lung parenchyma in
CT. The Riesz transform R of finite–energy signals f(x) ∈
R3 is defined in the Fourier domain as:

R̂f(ω) =
−jω
||ω||

f̂(ω), (1)

where f̂(ω) =
∫
R3 f(x)e−j〈w,x〉dx is the 3–D Fourier trans-

form of f with ω ∈ R3. It yields three Riesz components Ri

that can be viewed altogether as a localized gradient opera-
tor when coupled with an isotropic wavelet pyramid [7]. This
operator commutes with translation, scaling and rotation and
is therefore an excellent candidate to derive localized multi–
scale directional measures of 3–D texture properties [1].

2.2.2. Steerability and rotation–covariance

The Riesz filterbank obtained from (1) is steerable, meaning
that the magnitude of each Riesz operator Ri oriented in any
direction can be obtained from a linear combinations of the
initial operators. Specifically, R{f}(Ux) = UR{f}(x),
where U is a unitary rotation matrix [11]. The steerability is
used to normalize orientations at each voxel x0 by rotating the
Riesz operator with Ug in order to maximize its local energy.
Ug is derived from the sorted collection of eigenvectors of
the tensor matrix J(x0) defined as:

J(x0)=

Ñ
R2

1{g∗f}(x0) R1R2{g∗f}(x0) R1R3{g∗f}(x0)

R1R2{g∗f}(x0) R2
2{g∗f}(x0) R2R3{g∗f}(x0)

R1R3{g∗f}(x0) R2R3{g∗f}(x0) R2
3{g∗f}(x0)

é
,

(2)
where g(x) is a 3–D Gaussian window. For each location
x0, the resulting rotation matrix Ug maximizes the energy
of R1{g ∗ f}(x0) as well as the residual energies of R2{g ∗
f}(x0), followed byR3{g ∗ f}(x0).

This property is referred to as “rotation–covariance” (rep-
resented by RRC{f}(x)), where the organization of image
directions is characterized independently from its local ori-
entation [12, 3]. The latter differs from the monogenic sig-
nal [11] since the entire pyramid is using the same rotation
matrix Ug derived from the highest image resolution regular-
ized by g(x). It also differs from rotation–invariant operators
as RRC{f}(x) is directional.

2.3. Isotropic wavelet pyramids with optimal bandwidth

In order to measure local directional properties of the lung
tissue at M consecutive physical scales, the Riesz transform
must be coupled with a primary wavelet pyramid. 3–D Riesz–
wavelet frames are built by applying the Riesz transform to
each scale of the wavelet pyramid given by a wavelet function
ψ(x): R{ψm ∗ f}(x) for m = 1, . . . ,M . The design of the
wavelet pyramid must be carried out to fulfill particular con-
ditions, which cannot be satisfied altogether by conventional
orthogonal and separable wavelet transforms [13]. The main
property is that it must be isotropic to preserve the directional
decomposition of the Riesz transform. Some other properties
like band limitedness are also necessary [14, 15, 13].

Under these constraints, we designed the wavelet that is
maximally localized to minimize the influence of surround-
ing objects (i.e., lung boundaries, bronchovascular structures)
on the local texture properties. Therefore, we used the method
proposed in [10] for designing maximally localized isotropic
wavelets but for 3–D. Moreover, since experiments showed



Fig. 2. Construction of the feature vector v from regional
averaging of the energies E(RRC

i {ψm ∗ f}(x)) [9].

that the Papadakis wavelet [13] with a radial bandwidth of
[3π/10, π] outperformed other proposed wavelets like Simon-
celli [6], Meyer [16] that have radial bandwidth of [π/4, π],
we designed a family of maximally localized wavelets over
the radial bandwidth [Ω, π] for Ω ∈ [π/4, π/2] to simultane-
ously find the optimal bandwidth. The outcome of our de-
sign is the following Fourier–domain specification of our new
wavelets:

ψ̂Ω(ω) =



0 ‖ω‖ ≤ Ω or π < ‖ω‖,…
log
‖ω‖

Ω

log π
2Ω

Ω < ‖ω‖ ≤ π
2 ,

1 π
2 < ‖ω‖ ≤ 2Ω,…

1− log
‖ω‖
2Ω

log π
2Ω

2Ω < ‖ω‖ ≤ π.

(3)

Their defining property is that they minimize1∫
R3 x

2|ψΩ(x)|2dx under the constraint that their bandwidth
is limited to [Ω, π] and

∑
m∈Z |ψ̂Ω(2mω)|2 = 1.

2.4. Regional lung texture analysis and UIP classification

The pulmonary volumes were separated into 36 subregions
obtained from all intersections between apical, vertical cen-
ter, basal, peripheral, left, right, anterior and posterior lung re-
gions [9]. The average energies of the coefficients from each
subband E(RRC

i {ψm ∗f}(xk)) were computed for each sub-
region k and concatenated to form the feature vector v, where
i = 1, . . . , 3, m = 1, . . . , 4 and k = 1, . . . , 36. The dimen-
sion of v is 436, and its construction is illustrated in Fig. 2.
The variance of the 3–D Gaussian g(x) is set to 1 in Eq. (2).

A generalized linear model was used to estimate the class
membership ŷ of v as [17]:

ŷ = b0 + bT v, (4)

where sign(ŷ) > 0 denotes the classic UIP (versus atypical).
A 10–fold cross–validation with 200 Monte–Carlo repetitions
was used to estimate the generalization performance of our
model. The area under the receiver operating characteristic
curve (AUC) and classification accuracy (ACC) were com-
puted based on ŷ and sign(ŷ), respectively.

1The formula is a very close analytic approximation of the optimal solu-
tion that does not have a closed form.
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Fig. 3. Classification performance for Ω ∈ [π/4, π/2] us-
ing the rotation–covariant operator RRC. The importance of
wavelet bandwidth optimization for lung texture analysis is
highlighted, where Ω = 3π/8 provided best AUC=0.921 and
best ACC=0.897.

Table 1. Comparison of ψΩ with popular isotropic wavelet
pyramid implementations. All are using RRC{ψm ∗ f}(x).
The AUC reported in our previous study [9] was of 0.811.

Wavelet type Bandwidth AUC ACC

Simoncelli [6] [π/4, π] 0.775± 0.007 0.741± 0.006

Meyer [16] [π/4, π] 0.834± 0.007 0.8± 0.006

Papadakis [13] [3π/10, π] 0.901± 0.005 0.86± 0.005

Proposed ψΩ (3) [3π/8, π] 0.921± 0.004 0.897± 0.004

Shannon [7] [π/2, π] 0.802± 0.006 0.758± 0.006

3. RESULTS

The classification performance is reported in Fig. 3 for Ω ∈
[π/4, π/2] using the rotation–covariant operator RRC. The
comparison of ψΩ with other popular isotropic wavelet pyra-
mids in the literature is detailed in Table 1.

4. DISCUSSIONS AND CONCLUSIONS

We proposed an approach for the tuning of radial wavelet
bandwidth [Ω, π], Ω ∈ [π/4, π/2] of steerable pyramids. The
motivation behind this work was to provide a method for
finding the minimum spatial support of the wavelet required
to leverage the wealth of local texture properties conveyed
by modern volumetric medical imaging protocols. The use
of the rotation–covariant image operator RRC coupled with
an optimal wavelet bandwidth of [3π/8, π] provided best
performance for the automated classification of UIP with
an AUC = 0.921 ± 0.004 and an ACC = 0.897 ± 0.004.
The influence of the radial bandwidth [Ω, π] on the classi-
fication performance was found to be large with AUC val-
ues in [0.784, 0.921] and ACC values in [0.746, 0.897] (see
Fig. 3), hence demonstrating its importance for leveraging 3–
D morphological tissue properties in the vicinity of the lung
boundaries. The most popular designs for isotropic pyramids
(i.e., Simoncelli, Meyer and Shannon) were found to provide



worst results (see Table 1). This can be explained by their
extreme choices of wavelet bandwidth with Shannon being
the narrowest (i.e., [π/2, π], generating extensive ripple ef-
fect in the spatial domain), whereas Simoncelli and Meyer
used largest bands (i.e., [π/4, π]). The wavelet proposed by
Papadakis (i.e., [3π/10, π]) yielded near–to–optimal results,
which motivated the design of ψΩ. In fact, the optimal lower
bound of the bandwidth of ψΩ (i.e., Ω = 3π/8) lies exactly
in between π/4 and π/2.

The obtained classification performance suggests that the
automated differentiation of classic versus atypical UIP can
be done reliably. The performance improvement is large
when compared to our previous work: AUC = 0.811 in [9]
using the same cohort of patients. It can provide valuable
computer–aided assistance in less specialized practice cen-
ters without access to experts experienced in interstitial lung
disease, as well as avoiding unnecessary surgical biopsies.
Likewise, we expect the wavelet bandwidth to have a strong
influence on 3–D texture classification performance in a wide
variety of applications, where little attention has been payed
in the literature on its optimization so far.
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