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ABSTRACT

Organ segmentation is helpful for decision–support in diagnostic medicine. Region–growing segmentation algo-
rithms are popular but usually require that clinicians place seed points in structures manually. A method to
automatically calculate the seed points for segmenting organs in three–dimensional (3D), non–annotated Com-
puted Tomography (CT) and Magnetic Resonance (MR) volumes from the VISCERAL dataset is presented in
this paper. It precludes the need for manual placement of seeds, thereby saving time. It also has the advantage
of being a simple yet effective means of finding reliable seed points for segmentation.

Affine registration followed by B–spline registration are used to align expert annotations of each organ of
interest in order to build a probability map for their respective location in a chosen reference frame. The centroid
of each is determined. The same registration framework as above is used to warp the calculated centroids onto
the volumes to be segmented. Existing segmentation algorithms may then be applied with the mapped centroids
as seed points and the warped probability maps as an aid to the stopping criteria for segmentation.

The above method was tested on contrast–enhanced, thorax–abdomen CT images to see if calculated centroids
lay within target organs, which would equate to successful segmentation if an effective segmentation algorithm
were used. Promising results were obtained and are presented in this paper. The causes for observed failures
were identified and countermeasures were proposed in order to achieve even better results in the next stage of
development that will involve a wider variety of MR and CT images.
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1. INTRODUCTION

Clinicians have come to rely very heavily on imaging for diagnosis and pre–operative surgical planning.1 There
is a clear need for the efficient processing of the information amassed.2 Segmentation is one example of such
processing and, for region–growing segmentation, seed points need to be manually placed by experts. Time
that could otherwise be used for better patient care is thus needlessly spent. An algorithm for the automatic
identification of seed points for region–growing segmentation would preclude such a situation. After segmentation,
further processing of organ tissue such as 3D texture analysis can then be performed3 or other decision support
tools can use the input data.4

Several related approaches have been published in the literature. Singh et al.5 propose a method that
calculates seed points from areas of interest in grayscale two–dimensional (2D) images based on background
and object properties. This is followed by a region–growing stage using those seed points. Their method was,
however, not implemented for 3D images and was demonstrated only for X–ray images.

Xing et al.6 use statistical fusion of 3D brain MR images to find seed points for segmentation. Their method
incorporates the MAP–CSTAPLE789 approach to minimise mean–squared error(MSE). Our approach is simpler
since we aim to verify only if calculated seed points fall within the target organ. They also use FNIRT10 for
registration while we use the more powerful and general combination of affine and B–Spline registration within
the elastix framework.11 Our method is, therefore, suitable for any organ of interest as long as expert annotations
for them exist.
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In addition, a hybrid region–growing algorithm was proposed by Mubarak et al.12 The technique finds seeds
using the Harris corner detection.13 However, it was not extended to 3D images and was tested only on X–ray
images of the knee and 2D MRI brain images. Our method is comparatively more complicated but it is applicable
to 3D volumes of any organ.

It is clear from the above that our method presents distinct advantages as compared to previous techniques
developed in the field. Furthermore, this study is well aligned with the FP7–funded Visual Concept Extrac-
tion Challenge in Radiology (VISCERAL)14 benchmark∗ which has as one goal the automatic segmentation of
anatomical structures in non–annotated full–body MR and CT volumes. The project also involves the identi-
fication of an unspecified organ for which training data need to be analyzed without a–priori knowledge of the
organ. A segmentation method that uses the proposed method of seed point identification would well–suited to
achieve the goals of VISCERAL without the need to manually optimize and adapt tools to specific organs.

2. METHODS

A series of MR and CT volumes Y1 to YN (where N is the size of the set of available volumes) is provided by
VISCERAL. Each acquisition was examined by expert radiologists who annotated up to 20 organs and saved
each annotation, labelled A(Yn,organ) (where n is the identifier of a particular volume in the database), as a
separate volume.

One element of the set {Y1, Y2, . . . , YN} is picked as the reference frame and labelled as Xi (where i goes from
1 to N). It follows that: Xi∈ {Y1, Y2, . . . , YN}. This is used as a reference volume for the remaining steps in
this section and the whole process is repeated several times with a different element picked from {Y1, Y2, . . . , YN}
until all the members of the latter have been used as a reference once.

Figure 1 illustrates an instance of Xi and includes an illustrative annotation, A(Xi,liver), which is displayed
as a bright white region on top of Xi. The visualisation was generated using 3D Slicer†15

Figure 1: A contrast–enhanced, thorax–abdomen CT volume is chosen as Xi. For illustrative purposes, Xi is
superimposed with its corresponding liver annotation (manually generated by an expert): A(Xi,liver), shown as
a bright white region.

∗VISCERAL benchmark: http://www.visceral.eu/closed-benchmarks/benchmark-1/, 2012. [Online; accessed 19–
January–2015].

†3D Slicer: http://www.slicer.org/, 2013. [Online; accessed 19–January–2015].



2.1. Selection of volumes based on body shape

The success of our method is highly dependent on the quality of registration between training volumes and the
chosen reference volume. Minimising registration error is, thus, a top priority. Separating volumes according
to the body shape of the patients involved and subsequently applying our algorithm on patients having similar
body shapes separately would contribute greatly to reducing such errors. That is because, for instance, organ
localisation would be wildly different for an underweight patient as compared to an obese one but, amongst
underweight or obese patients separately, organ placement would be very similar. We, therefore, proceed to
assess the body shape of patients via a close inspection of their medical scans.

2.2. Registration

A training volume from a certain class of body shape, labelled as Y1, is then registered with Xi belonging
to the same class of body shape. Y1 is chosen as the moving volume and Xi is the fixed volume. An affine
registration16 followed by a B–spline registration17–19 are carried out because this combination offers better
accuracy as compared to only rigid or affine registration methods. The cost metric used is mutual information
(MI).20 To speed up the computation of MI, the implementation by Mattes et al.21,22 is used. To minimize the
interpolation errors that occur during registration while keeping computation time low, B–Spline interpolation
is carried out. After the successful completion of registration, the B–spline transform T that maps Y1 onto Xi

is obtained. Next, one organ of interest, Z, is picked. The annotation volume, A(Y1,Z), is then converted into a
binary volume before being transformed using T , giving AT (Y1, Z). The latter is resampled such that it has the
exact volume and voxel dimensions as A(Xi, Z), which itself has the same mensurations as Xi.

2.3. Creation of the Probability Distribution Volume

To create a probability distribution volume with Xi as the reference, the above registration step is carried out
for all N − −2 available VISCERAL volumes apart from Xi itself and a volume, Xtest, which is kept aside for
testing and evaluating the method. For each training volume Yn, where n goes from 1 to N − −2, a different
transformation Tn and a different warped annotated volume ATn(Yn, Z) are obtained. Since ATn(Yn, Z) for
all n have the same volume and voxel sizes as A(Xi, Z), they may be combined together voxel–wise and then
normalized according to equation 1 to obtain the probability distribution volume for organ Z: PDZ . Please note
that A(Xi, Z) and Xtest are excluded from the above calculation in order to avoid bias.

PDZ =
1

N

N∑
n=1

ATn(Yn, Z) (1)

2.4. Generation of a Seed Point

The centroid of PDZ , represented in row vector form as
[
xc yc zc

]
, corresponds to the weighted average

location of a point that lies within PDZ . For an MxNxP volume, it can be found using equation ( 2), where
V (x, y, z) is the voxel value at coordinates (x, y, z), which is represented as

[
x y z

]
in vector form.

For the volume, Xtest, on which the seed point for segmentation has to be found, B–spline registration
between Xi and Xtest is carried out. This time, Xi is used as the moving image while Xtest is the fixed volume.
The obtained transformation is applied to the volume containing the centroid found above. The location of the
warped centroid may now be used as a seed point, S(Xtest, organ), for segmentation on volume Xtest.
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2.5. Evaluation of Viability of the Generated Seed Points

To determine if S(Xtest, organ) is a viable seed point for segmentation, it is sufficient to determine if it lies on a
non–zero part of A(Xtest, organ). That follows from the reasonable assumption that an effective region–growing
algorithm will succeed if is supplied with a seed lying in the target organ.



3. RESULTS

Fifteen contrast–enhanced, thorax–abdomen CT volumes in the VISCERAL dataset were considered for use in
order to generate the results presented in this section. Full–body CT and MR volumes were not taken into
consideration in this paper as correct registration across modalities and between thorax–abdomen and full–body
volumes is more difficult to achieve and more liable to lead to errors. Since a discussion of the merits of our
chosen registration method is out of the scope of this paper, incorporating such data would only distract us from
our goal of demonstrating the usefulness of the seed point generation algorithm as a whole. Future work will
incorporate those images as well and more in–depth work will be carried out to ensure good registration for all
image types.

After classifying the patient body shape through careful examination of the CT scans, we found 11 normal–
weighing, 1 underweight, 2 overweight, and 1 obese patients. The method described earlier was applied to those
11 volumes as there are not enough patients for the other body shapes. In turn, one was chosen from the 11 as
the reference, Xi, while another was chosen as the test volume, Xtest. The remaining 9 volumes were used to
generate the organ probability maps. Seven organs were selected for segmentation: the liver, spleen, right lung,
left lung, right kidney, left kidney, and urinary bladder Therefore, a total of 770 experiments were conducted.

Figure 2a shows an example of the computed probability distribution volume for the liver, PDliver, in coronal
view. The lightest region indicates a probability of one for a voxel to lie on the liver and the darkest region
indicates a probability of zero. Figure 2b illustrates the centroid of PDliver as a very dark point near the centre
of the probability distribution.

(a) (b)

Figure 2: (a) The probability distribution volume of the liver (coronal view), produced using 9 liver annotations
and superimposed on the reference volume is shown. The lightest region indicates a probability of 1 for a voxel
to lie on the liver and the darkest region indicates a probability of 0; (b) Computed centroid of the liver shown
as a dark spot in the middle of the probability distribution volume.

The result of applying the procedure separately on the liver, the right lung, the right kidney and the urinary
bladder is shown in Figure 3. It may be observed that the seed points shown are located well within the target
organs, implying that effective segmentation algorithms are expected to accurately segment those organs.

Table 1 shows how the volumes in the VISCERAL dataset are assigned new identification (ID) information to
improve the simplicity and readability of Table 2 which shows the result of determining the viability of calculated



(a) (b)

(c) (d)

Figure 3: The above sub–figures show the following: (a) Encircled seed point superposed on Xi and PDliver; (b)
Encircled seed point on Xi and PDurinary bladder; (c) Encircled seed point superposed on X and PDleft lung; (d)
Encircled seed point on Xi and PDleft kidney.



seed points for the 770 experiments. For each fixed volume and each organ of interest, 10 volumes were available
for testing. Therefore, 10 seed points could be calculated per fixed volume and per organ. The ratio of the
number of viable seed points (which can vary from 0 to 10) to the number of calculated seed points (which is 10
here) for a particular fixed volume and a particular organ of interest constitutes one entry in Table 2. Naturally,
the ratio goes from 0.0 to 1.0 and there are 77 such entries corresponding to the 11 possible fixed images and 7
possible organs of interest.

Table 1: Images used from the VISCERAL dataset and the volume ID assigned to each in this paper.

VISCERAL filename Assigned Volume ID
10000100 1 CTce ThAb 100
10000105 1 CTce ThAb 105
10000106 1 CTce ThAb 106
10000108 1 CTce ThAb 108
10000109 1 CTce ThAb 109
10000110 1 CTce ThAb 110
10000112 1 CTce ThAb 112
10000113 1 CTce ThAb 113
10000127 1 CTce ThAb 127
10000128 1 CTce ThAb 128
10000131 1 CTce ThAb 131

Table 2: Results of conducting 770 experiments to find seed points for region–growing segmenation. For a
particular organ of interest and a particular reference image, ten seed points could be found since there are 10
remaining images that can be used for testing. Each result entry in the table is the ratio of viable seed points (0
to 10) to the number of test volumes tried (which is equal to 10 here)

Volume ID Right Lung Left Lung Urinary Bladder Right Kidney Left Kidney Liver Spleen
100 1.0 1.0 1.0 1.0 0.1 1.0 0.1
105 0.0 1.0 1.0 1.0 1.0 1.0 0.1
106 1.0 1.0 1.0 1.0 0.1 1.0 0.0
108 1.0 1.0 1.0 1.0 1.0 1.0 0.1
109 1.0 1.0 0.0 1.0 1.0 1.0 0.1
110 1.0 1.0 0.0 0.0 0.1 1.0 0.1
112 1.0 1.0 1.0 1.0 0.0 1.0 1.0
113 1.0 1.0 1.0 0.1 1.0 1.0 1.0
127 1.0 1.0 1.0 1.0 0.1 0.6 0.1
128 1.0 1.0 1.0 0.0 0.0 0.0 0.1
131 1.0 1.0 1.0 1.0 0.8 1.0 0.1

Out of 770 calculated seed points, 557 were found to be viable. That translates to a success rate of 72.3%.

4. DISCUSSIONS AND FUTURE WORK

This article presents a very simple, and easy–to–implement approach for finding seed points for segmentation
and eventual identification of any organ based on annotated 3D training data. Obtained results indicate that it
is indeed effective in finding seed points within the target organs and that a simple segmentation algorithm can
subsequently delineate organs with a respectable degree of accuracy. It can be noted that the 3D probability
maps themselves can be used as segmentations in areas where little contrast exists in the test volume itself.
Moreover, the method is not restricted to CT volumes and can be used on any modality. In fact, the use of



mutual information as a cost metric in the non–rigid registration algorithm allows the transfer of annotations
from one modality to another modality with no great difficulty.

Moreover, in this paper, the volumes used for training and testing were manually separated in terms of
patient body shape. As a reminder, the goal of doing that was to avoid a large mismatch between reference
and training volumes, which would subsequently translate into lower registration error and better seed point
viability. However, that can be avoided in the future by asking clinicians to tag new patients as underweight,
normal, overweight, or obese during data acquisition. This relatively quick and painless solution to the error
minimisation challenge would not be difficult to implement and would make our method more viable than when
no such pre–processing is performed.

Owing to the currently limited size of the dataset used, a limited set of results were presented. Notably,
experiments were carried out only for patients with a normal body shape. A more expansive set of results will
be gathered as more data are acquired for testing the proposed method. In that way, it will become possible
to repeat the experiments for all body shapes. It will also become possible to carry out a more comprehensive
study of the success rate of finding seed points falling within the confines of the target organ. Testing will also
be extended to MR images as well as full–body volumes. A large quantity of such images are already available
in VISCERAL and even more datasets will become available with time through the MD–PAEDIGREE project‡.

Finally, segmentation will fail if the computed seed point happens to lie outside the target organ in volumes
under examination. Table 2 contains some instances of non–viable seed points that will lead to failed segmen-
tations. Those occurred because the registration approach described in this paper was not always sufficiently
accurate. Future work will seek to address that issue by either using a different registration approach or by
optimising the registration parameters that were employed to obtain the reported results. Notwithstanding
those difficulties, 72.3% of calculated seed points were found to be viable. The related publications mentioned
in the introduction section had slightly different objectives such that, at the time of writing, our work cannot be
directly compared with existing literature in the field.

5. CONCLUSIONS

Using our simple method, seed points for region–growing segmentation can be found in 72.3% of the cases
where the reference and test volumes belong to patients with a normal body shape. Separating patient volumes
according to body shapes has precluded situations where there is a significantly large mismatch in terms of body
shape between the test and reference volumes, thereby leading to more accurate registration and better seed
points.

It is clear that registration accuracy is the major tumbling block in the quest for better figures for the viability
of seed points. In future work, the investment of some effort on our part in finding better registration algorithms
than the one used in this paper will undoubtedly help us increase the success rate even further. In addition,
with the expected availability of a larger quantity and variety of images for training and testing, it will become
possible to test and optimise our algorithm for all body shapes.

Once all proposed improvements are implemented, it is expected that the proposed method will help save
time and play a significant role in the improvement in the way the ever–increasing mass of collected medical data
is processed and stored.
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