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ABSTRACT
Image retrieval approaches can assist radiologists by finding

similar images in databases as a means to providing deci-

sion support. In general, images are indexed using low-level

imaging features, and a distance function is used to find the

best matches in the feature space. However, using low-level

features to capture the appearance of diseases in images is

challenging and the semantic gap between these features

and the high-level visual concepts in radiology may impair

the system performance. We present a semantic framework

that enables retrieving similar images based on high-level

semantic image annotations. This framework relies on (1)

an automatic approach to predict the annotations as semantic

terms from Riesz texture image features and (2) a distance

function to compare images considering both texture-based

and radiodensity-based similarities among image annota-

tions. Experiments performed on CT images emphasize the

relevance of this framework.

Index Terms— Image retrieval, Riesz wavelets, image
annotation, RadLex, computed tomographic (CT) images

1. INTRODUCTION
Diagnostic radiologists are now confronted with the chal-

lenge of efficiently interpreting cross-sectional studies that

often contain thousands of images [1]. A promising ap-

proach to maintain interpretative accuracy in this “deluge”

of data is to integrate computer-based assistance into the

image interpretation process. Content-based image retrieval

(CBIR) approaches could assist users in finding visually sim-

ilar images within large image collections. This is usually

performed by example, where a query image is given as input

and an appropriate distance is used to find the best matches

in the corresponding feature space [2]. CBIR approaches

could then provide real-time decision support to radiologists

by showing them similar images with associated diagnoses.

Under CBIR models, images are generally indexed using

imaging features extracted from regions of interest (ROI) of

the images (e.g., lesions) and focus on their contents (e.g.,
shape, texture). Although these low-level features are power-

ful to automatically describe images, they are often not spe-

cific enough to capture subtle radiological concepts in im-

ages (semantic gap). Despite recent efforts conducted to in-

tegrate more robust features (e.g., “bag-of-visual-words” [3])

into CBIR systems, their performances are often limited by

the low-level properties of these features because they cannot

efficiently model the user’s high-level visual observations and

semantic understanding [4]. Since this problem remains un-

solved, current research in CBIR focuses on new methods to

characterize the image with higher levels of semantics, closer

to that familiar to the user [5].

In recent work on medical image retrieval with semantics,

the images were characterized using a set of ontological terms

[6]. These terms, which are linked to the user’s high-level

understanding of images, can be used to describe accurately

the image content (e.g., lesion shape, enhancement). Since

terms describe the image contents using the terminology used

by radiologists during their observations, they can be consid-

ered as powerful features for CBIR systems [7]. In general,

images are represented as vectors of values where each ele-

ment represents the likelihood of appearance of a term, and

the similarity between images is evaluated by computing the

distance between these vectors. However, two issues remain

unsolved when using terms to characterize medical images.

A first issue is the automation of image annotation: usually

the terms are manually provided by radiologists. Although

many approaches have been proposed to predict these seman-

tic features from computational ones [8], this automation re-

mains challenging for complex lesions. A second issue is that

most of the existing CBIR systems based on semantic features

do not consider the intrinsic relations (e.g., visual, semantic)

among the terms for retrieving similar images, and they treat

each semantic feature as totally independent of the others.

We proposed recently [9] a semantic framework that en-

ables retrieval of similar images based on their visual and se-

mantic properties. It relies on two main strategies: (1) an ap-

proach to predict the image annotations as ontological terms

from Riesz texture features; (2) a distance function to evalu-

ate similarity of image-pairs that considers both the visual and

ontological relations among the terms describing the images.

We propose in Sec. 2 an extension of this framework to

compare images by considering both the texture-based and

the radiodensity-based similarities between the terms describ-

ing the images. This combination provides a means of accu-

rately retrieving similar database images that can be consid-

ered as a potential solution to reduce the semantic gap. This

novel framework is then evaluated in the context of the re-

trieval of liver lesions extracted from CT images (Sec. 3).

Conclusions and perspectives are then presented (Sec. 4).
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2. METHODOLOGY
The workflow of the proposed CBIR framework is divided

into four steps that can be grouped in two phases (Fig. 2):

– An offline phase (2 steps) is used to build a visual model

of the terms employed to characterize the images. Step 1 con-

sists of learning, from the database images, a visual signature

for each ontological term based on Riesz wavelets. These sig-

natures are used both to predict the image annotations and to

establish visual “image-based” similarities between the terms.

Step 2 consists of computing term similarities using a fusion

of their texture-based and radiodensity-based similarities.

– An online phase (2 steps) is used to retrieve similar im-

ages in the database given a query image. Step 3 consists of

automatically annotating this image by predicting term like-

lihood values based on the term signatures built offline. Step

4 consists of comparing the query to previously annotated

images by computing the distance between their term like-

lihood vectors. Vectors are compared using the hierarchical

semantic-based distance (HSBD) [10, 11], which enables to

consider the term similarities computed offline.

2.1. Offline phase
Step 1. Learning of the term visual signatures. In this

framework, we use an automated strategy to predict terms be-

longing to an ontologyΘ that characterize the lesion contents.

This strategy, originally proposed in [12, 13], relies on au-

tomated learning of the term visual signatures from textural

features derived from the image ROIs (Fig. 2-�).

To reduce the semantic space search, we created pre-

defined lists of terms taken from a ontology Θ. These terms

are used to describe the image contents in a specific applica-

tion. Among these terms, we selected those describing the

margin and internal texture of the lesions, since these are key

aspects that describe the appearance of lesions. We denote as

X = {x0, x1, . . . , xk−1} with xi ∈ Θ this vocabulary.

Given a training set of previously annotated image ROIs,

this approach learns the image description of each term using

support vector machines (SVM) and Riesz wavelets. Each

annotated ROI is divided in a set of 12 × 12 image patches

extracted from the lesion margin and internal texture. Each

patch is characterized by the energies of multi-scale Riesz

wavelets and a histogram of the intensity (i.e., radiodensity)

in Hounsfield units (HU) in [−60, 220] (with 20 bins) that

models the distribution of the gray-levels in the patch. This

patch represents an instance in the feature space. The learn-

ing step relies then on SVMs, which are used to build term

visual signatures in this feature space. The direction vector

of the maximal separating hyperplane in one-versus-all con-

figurations defines the term signature. Once the signatures

have been learned, we obtain for each term a model that char-

acterizes a visual description of the term in the image. The

visual signature of a term xi ∈ X can be modeled as the

direction vector1 Γi = 〈Γi
0,Γ

i
1, . . . ,Γ

i
U−1〉 where each Γi

u

1The length U = J · (N + 1) of this vector depends on the order of
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Fig. 1: Visual signatures learned as linear combinations of

Riesz wavelets for 3 terms. The color scale shows the sig-

nature profiles Γi obtained as a weighted sum of Riesz tem-

plates. Each signature Γi is presented with (1) a ROI where

the term modeled by the signature has a high appearance

probability and (2) its companion 20 bins histogram Ψi.

models the weight of the u-th Riesz template. The same ap-

proach is used to learn the importance of each bin of the his-

togram. Each visual signature Γi goes along a 20 bins his-

togram Ψi = 〈Ψi
0,Ψ

i
1, . . . ,Ψ

i
19〉 where each Ψi

u models the

weight of the u-th bin in HU. Fig. 1 shows 3 visual signatures

learned for terms used to annotate liver lesions in CT scans.

The term models are used both to predict the presence

likelihood of the terms for new image ROIs and to establish

the texture and radiodensity similarities between terms.

Step 2. Term similarity assessment. The image retrieval

step of this framework takes into account the term relations

when comparing images described by vectors of terms. We

propose in this work to compute the term similarities using

their texture-based and radiodensity-based similarities.

To model the similarity between the k terms of the consid-

ered vocabulary X , we define a k×k symmetric term similar-

ity matrixMtsim that contains the intrinsic relations between

all the k terms of X . To fill this matrix, we use a similar-

ity function sΓ∗Ψ based on the combination of texture-based

sΓ and radiodensity-based sΨ term similarity provided by the

visual signatures of the terms.

Texture-based term similarity: The image-based similarity

between two terms xi, xj can be evaluated by computing the

Euclidean distance between their visual signatures Γi,Γj as

sΓ(xi, xj) =

√∑U−1
u=0 |Γi

u−Γj
u|2

ωΓnorm
where ωΓnorm is a normaliza-

tion factor. This similarity models the proximity between the

terms according to their image textural appearance (Fig. 1).

the Riesz transform N and the number of dyadic scales J (in practice we set

N = 8 and J = 3).
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Fig. 2: Workflow of the proposed framework for image retrieval (orange boxes = offline steps; blue boxes = online steps).

Radiodensity-based term similarity: The radiodensity-based

similarity between two terms xi, xj can be evaluated by com-

puting the Euclidean distance between their histogram signa-

turesΨi,Ψj as sΨ(xi, xj) =

√∑19
u=0 |Ψi

u−Ψj
u|2

ωΨnorm
where ωΨnorm

is a normalization factor. This similarity models the proxim-

ity between the terms according to their radiodensity appear-

ance in the image (Fig. 1).

Combination of texture and radiodensity similarities: To

combine the image-based and the radiodensity-based sim-

ilarities, we define a weighted sum as sΓ∗Ψ(xi, xj) =
1/2 · sΓ(xi, xj) + 1/2 · sΨ(xi, xj) that considers equally

the texture and radiodensity similarities between terms.

2.2. Online phase
Step 3. Automatic annotation of a query image. Let IA be

a query image. A lesion in the query image IA is first man-

ually delineated to capture the boundary of a ROI. The next

step is to characterize the ROI content in terms of respective

likelihoods of semantic terms belonging to X .

The visual signaturesΓi learned offline for each term xi ∈
X are used to automatically annotate the content of the ROI

of the query image IA. The ROI instance is expressed in

terms of the energies Eu of the multi-scale u-th Riesz tem-

plates as ΓROI = 〈E0, E1, . . . , EU−1〉. The likelihood value

ai ∈ [0, 1] of each term xi is computed as the dot product

between the ROI instance ΓROI and the respective visual sig-

natures Γi. Once the query image IA has been “softly” an-

notated, a vector of semantic features can be built as A =
〈a0, a1, . . . , ak−1〉. It constitutes a synthetic representation

of IA, which forms the feature clue for retrieval purpose.

Step 4. Image retrieval with term similarities. Once the

query image IA has been characterized with a vector of se-

mantic features, this image description can be used to retrieve

similar images in the database based on their vector distances.

To this end, the hierarchical semantic-based distance (HSBD)

[10, 11] was extended to enable the comparison of vectors of

semantic features based on term similarities.

The computation of HSBD relies on the iterative merg-

ing of the semantically closest vector elements (i.e., terms) to

create coarser vectors of higher semantic levels. The order of

fusion between the terms is determined from the term simi-

larity matrixMtsim (built offline) that contains the combina-

tion of texture-based and radiodensity-based similarities sΓ∗Ψ
between all the k terms of X . After each iteration, the Man-

hattan distance is computed between the couple of (coarser)

vectors created previously. The resulting series of distances

enables assignment of vector similarities at different seman-

tic levels. The distances belonging to this series are then fused

to provide the HSBDsΓ∗Ψ distance value.

3. LIVER LESIONS RETRIEVAL FROM CT SCANS

3.1. Experiments
To assess our framework, we applied it in a system for re-

trieving liver lesions from a database of 2D CT images. Liver

lesions stem from a variety of diseases, each with different

visual manifestations. Our database was composed of 72 CT

images of liver in the portal venous phase, including 6 types

of lesion diagnoses (Cyst, Metastasis, Hemangioma, Hepato-

cellular carcinoma, Focal nodular hyperplasia and Abscess).

We have used the proposed semantic framework in a system

for ranking image similarity to a query image. Such a sys-

tem can be used by radiologists to query the database to find

similar medical cases based on the image contents.
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Fig. 3: Image retrieval results for the dataset of CT images of the liver.

Our approach requires that lesions on CT images be de-

lineated by a 2D ROI. In this study, a radiologist drew a ROI

around the lesion on these images leading to 72 individual

ROIs that were used as input to our semantic image retrieval

framework. Starting from a training set of manually anno-

tated images, the visual signature models of the terms were

learned offline using a leave one patient out cross-validation

strategy and then used to automatically annotate the 72 ROIs.

To build the training set, each lesion was annotated by a radi-

ologist with a set of 18 potential semantic terms (e.g., smooth

margin, irregular margin, internal nodules, hypodense, het-

erogeneous, hypervascular) from the RadLex ontology [14].

These terms are commonly used by radiologists to describe

the lesion margin and the internal texture. In parallel, the of-

fline phase was used to compute the term similarity values

that were stored in a 18× 18 term similarity matrixMtsim.

During the online phase, we withheld each database im-

age and ranked the remaining ones according to HSBDsΓ∗Ψ
(Fig. 3 (a)). We evaluated the retrieval performance by com-

paring the ranking results obtained with our system to a rank-

ing of reference, which was built from a similarity reference

standard (defined for 25 × 25 image pairs) by two confirmed

radiologists [6]. We used normalized discounted cumulative

gain (NDCG, [15]) to evaluate performance. The NDCG in-

dex is used to measure the usefulness (gain) on a scale of

0 to 1 of K retrieved lesions on the basis of their positions

in the ranked list compared with their similarity to the query

lesion according to a separate reference standard. For each

query image, the mean NDCG value was computed at each

K = 1, . . . , 25. This enables to evaluate the relevance of the

results for different number of retrieved images.

We compared the retrieval results obtained with HSBDsΓ∗Ψ
to the results obtained by using other existing distances: the

Manhattan DL1 and Euclidean DL2 distances, which do no

take into account the relations among the terms, the earth

mover’s distance (EMDsΓ∗Ψ ) [16], which was extended to

consider the term relations contained in the Mtsim term

similarity matrix built offline, and the previous version of

HSBDsΓ∗Θ [9], which evaluates the term relations based on

their texture similarity and ontological proximity.

3.2. Results

Fig. 3 (b) shows the NDCG scores obtained for the five con-

sidered distances. From this graph, one can note that the

DL1 and DL2 distances appeared to yield the worst overall

results, with mean case retrieval accuracy equals to 0.80. The

HSBDsΓ∗Ψ distance appeared to yield the best overall results,

with mean case retrieval accuracy equals to 0.92. Results ob-

tained with the EMDsΓ∗Ψ and HSBDsΓ∗Θ distances yielded

intermediate overall results, with mean case retrieval accu-

racy equals to 0.85 and 0.89 respectively.

4. CONCLUSIONS AND PERSPECTIVES

We present a semantic framework that enables retrieving sim-

ilar images based on semantic annotations. These annotations

consist of ontological terms, automatically predicted from the

image content, which ensure the performance reproducibil-

ity with radiologists. A unique aspect of our approach is the

consideration of both texture-based and radiodensity-based

similarities between terms that describe the image contents

when retrieving similar images. We plan to enhance the cur-

rent framework by considering semantic term similarities ex-

tracted from multiple biomedical ontologies and complemen-

tary quantitative imaging descriptors. In the future, we also

plan to involve this system into larger clinical studies.

This project was funded by grants from NCI, NIH (# U01CA142555-

01), SNSF (# PBGEP2 142283), and GE Medical Systems.
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histogram semantic-based distance for multiresolution

image classification,” in Proceedings of the IEEE In-
ternational Conference on Image Processing, 2012, pp.

1157–1160.
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