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Objectives:We propose a novel computational approach for the automated cla
sification of classic versus atypical usual interstitial pneumonia (UIP).
Materials and Methods: Thirty-three patients with UIP were enrolled in th
study. They were classified as classic versus atypical UIP by a consensus
2 thoracic radiologists with more than 15 years of experience using the Americ
Thoracic Society evidence–based guidelines for computed tomography diagn
sis of UIP. Two cardiothoracic fellows with 1 year of subspecialty training pr
vided independent readings. The system is based on regional characterizatio
of the morphological tissue properties of lung using volumetric texture analys
of multiple-detector computed tomography images. A simple digital atlas wi
36 lung subregions is used to locate texture properties, from which the respons
of multidirectional Riesz wavelets are obtained. Machine learning is used to a
gregate and to map the regional texture attributes to a simple score that can
used to stratify patients with UIP into classic and atypical subtypes.
Results: We compared the predictions on the basis of regional volumetric te
ture analysis with the ground truth established by expert consensus. The ar
under the receiver operating characteristic curve of the proposed score was es
mated to be 0.81 using a leave-one-patient-out cross-validation, with high spec
ficity for classic UIP. The performance of our automated method was found
be similar to that of the 2 fellows and to the agreement between experienc
chest radiologists reported in the literature. However, the errors of our metho
and the fellows occurred on different cases, which suggests that combinin
human and computerized evaluations may be synergistic.
Conclusions: Our results are encouraging and suggest that an automated sy
tem may be useful in routine clinical practice as a diagnostic aid for identifyin
patients with complex lung disease such as classic UIP, obviating the need f
invasive surgical lung biopsy and its associated risks.
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I diopathic pulmonary fibrosis (IPF) is a specific form of progressiv
fibrosing parenchymal pneumonia of unknown cause and is the lea

ing cause of end-stage lung disease requiring transplantation accountin
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for more than 50% of lung transplants. Median survival for patien
with IPF remains dismal at 3 years after diagnosis.2–4 Idiopathic pu
monary fibrosis is associated with the histologic and/or radiolog
pattern of usual interstitial pneumonia (UIP).5,6 Candidates for surg
cal biopsy must be carefully selected because the procedure is inv
sive as well as costly and carries significant risks in patients wi
possible UIP. Specifically, an acute exacerbation of their lung disea
is an uncommon but potentially fatal complication after biopsy.2 Su
gical lung biopsy can be obviated when the clinical and radiograph
impressions are typical of UIP.7–10 However, atypical appearances
UIP are common, accounting for 30% to 50% of patients.2,11 In th
context, candidate selection for lung biopsy requires a multidiscipli
ary consensus of clinicians and radiologists experienced in intersiti
lung diseases, found only in specialized centers of practice.

The classic computed tomographic (CT) appearance of UIP
characterized by basal- and peripheral-predominant reticular abno
mality and honeycombing2,12 (Table 1). Importantly, a confident C
diagnosis of UIP also requires the absence of atypical findings. The a
curate identification of classic UIP requires meticulous characte
ization of parenchymal abnormalities as well as appropriate anatom
localization, mosty accurately performed by experienced thoracic rad
ologists.13 The characterization of lung parenchymal abnormaliti
such as honeycombing, reticulation, and ground glass requires the a
preciation of subtle 3-dimensional (3D)morphological tissue properti
(eg, parenchymal texture) shown in Figure 1. A challenge is that visu
inspection demonstrates low reproducibility.14 The importance of rela
ing these patterns to their anatomical location in the lungs (upper, mi
dle, lower zones, etc) adds another level of complexity and is subje
to high interobserver variation.

The automated computerized recognition of lung tissue types
chest CT has been an active research domain to assist image interpr
tation and enhance diagnosistic accuracy.15 Most studies are based o
2-dimensional texture analysis on a slice basis.16–19 Few studies ful
leverage the wealth of 3D data contained in contemporary volumetr
CT data sets, specifically using 3D solid texture analysis.14,20,21 Eve
more infrequent is an approach that localizes tissue texture properti
in the lung anatomy. The latter is of crucial importance, not only f
the differential diagnosis of diffuse lung diseases but also because th
typical appearance of most tissue types differs in distinct regions
the lung. The elaboration of a detailed digital atlas of the lungs is cha
lenging mainly because of substantial intersubject variations in pu
monary architecture and breathing cycle, especially for patients wi
IPF in whom fibrotic architectural distortion is a characteristic featur
A digital lung tissue atlas based on intersubject 3D image registratio
has been proposed to overcome this challenge.22 This approach has r
cently been refined with a landmark-based coordinate system,23 whic
proved to be more robust to changes in structures across individuals. T
our knowledge, this approach has not yet been used to characteri
interstitial lung disease. Zrimec and Wong24 developed a basic atlas
improve classification of honeycombing. However, their approach
based on peripheral lung regions only (neither vertical nor lateral cha
acterization), which are analyzed with 2-dimensional texture featur
extracted on axial slices.
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TABLE 1. Radiological Criteria for UIP1

Classic UIP (All Required) Inconsistent With UIP (Any)

Peripheral, basal predominance Upper or midlung predominance
Reticular abnormality Peribronchovascular predominance
Honeycombing with or without traction bronchiectasis Extensive ground-glass abnormality (extent > reticular abnormality)
Absence of features listed as inconsistent with UIP pattern Profuse micronodules (bilateral, predominantly upper lobes)

Discrete cysts (multiple, bilateral, away from areas of honeycombing)
Diffuse mosaic attenuation/air trapping (bilateral, in 3 or more lobes)
Consolidation in bronchopulmonary segment(s)/lobe(s)

UIP indicates usual interstitial pneumonia.

Depeursinge et al Investigative Radiology • Volume 00, Number 00, Month 2015
In this article, we used a basic anatomic atlas to define and e
tract morphological tissue properties (ie, 3D texture) from 36 anatomic
subregions of the lung parenchyma. The latter were aggregated to crea
computational models of the radiological phenotypes for classic an
atypical UIP. We hypothesized that the characterization of these radi
logic phenotypes differentiates the UIP subtypes, specifically class
versus atypical UIP. To produce an automated system for this classific
tion task, machine learning was used to derive a score from the region
texture attributes. This score identified patients with typical versus aty
ical UIP, the latter requiring further evaluation (eg, biopsy) to confir
the diagnosis of IPF. To the best of our knowledge, our work is th
first attempt to automatically differentiate the UIP subtypes using com
putational methods.

MATERIALS AND METHODS

Data set
Computed tomographic examinations of 33 patients with biops

proven UIP/IPF from Stanford Hospital and Clinics were retrospe
tively reviewed. The examinations were performed in compliance wi
national legislation and Declaration of Helsinki guidelines, with instit
tional review board waiver of informed consent for this retrospectiv
analysis. Two thoracic radiologists with more than 15 years of exper
enceworked in consensus to classify each patient as classic versus aty
ical UIP on the basis of the American Thoracic Society evidence–base
guidelines for CT diagnosis of IPF/UIP listed in Table 1.1 Therewere 1
patients categorized as having a classic UIP and 18 patients with a
atypical UIP appearance on CT. Additional readings were performe
by 2 cardiothoracic fellows, each having 1-year specialty training to e
tablish an optimal human performance. A volumetric CT scan w
available for each patient, which was acquired within the year of th
biopsy-proven diagnosis. The standard routine protocols yielded a com
puted tomographic dose index of 19.51 ± 8.81 mGy and a dose-leng
product of 622.11 ± 269.97 mGy·cm. The CT scans were reconstructe
with slice thicknesses of 0.625 mm (1), 1 mm (15), 1.25 mm (14), an
2 mm (3). The spacings between the slices are 0.6 mm (3), 1 mm (13
1.25 mm (14), as well as 2 mm (3), and the pixel spacings are in th
FIGURE 1. Common parenchymal appearances of UIP in CT.
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range of 0.59 to 0.82 mm. All volumes were resampled to have isotr
pic cubic voxels of 0.59 � 0.59 � 0.59 mm3 using cubic spline inte
polation. This ensures that the physical dimensions (ie, image scal
and directions) are comparable between the patients.

3D Anatomical Atlas of the Lungs
A simple anatomical atlas of the lung served as a 3D reference

localize the various lung tissue types. The locations were chosen a
cording to the predominant pattern sites of classic UIP (Table 1). Firs
a semiautomated segmentation of the lung volumes was carried o
with a graphical user interface.25 The user initiated a region growing a
gorithm from a seed point placed inside the lungs. The growing 3D r
gion mimics the propagation of air in lungs, where each neighborin
voxel is added to the regionMlung if the summed value of its own neig
bors differs by less than a threshold value defined by the user. The lun
are divided vertically into apical, middle lung, and basal regions on th
basis of the center of mass ofMlung (Table 2). The axial division resul
into central, intermediate, and peripheral lung regions. Left, right, ant
rior, and posterior regions are defined on the basis of the intersectio
of the coronal and sagittal planes. The intersections of all 10 lung div
sions results in 36 subregions.

3D Texture Quantification Using Riesz Wavelets
Three-dimensional multiscale Riesz filter banks were used

characterize the morphological properties of the lung parenchyma
volumetric CT. These filters are advantageous for texture characteriz
tion because they quantify the local amount of directional image pa
terns at multiple scales. Second-order Riesz wavelets were used,26,

yielding 6 filters per image scale that are oriented along the main imag
directions X, Y, and Z as well as 3 diagonals XY, XZ and YZ (Fig. 2
Likewise, Riesz wavelets allow for a complete coverage of image scal
and directions. We hypothesized that the local morpholgical tissu
properties of the normal lung, ground glass, reticulation, and hone
combing can be expressed as the combinations of the responses of th
oriented filters. The filters were implemented at multiple scales to an
lyze both fine morphological structures and coarser reticulations of th
lung parenchyma.
© 2014 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 2. Localization of the Lung Masks

⊥ Vertical ⊥ Axial ⊥ Coronal ⊥ Sagittal

Apical, central, basal Peripheral, middle, axial Left, right Anterior, posterior

The lungs are split perpendicularly to 4 axes.25

Images can be viewed online in color at www.investigativeradiology.com.
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Regional Lung Texture Analysis
The prototype regional distributions of the morphological tissu

properties of classic versus atypical UIPs were learned using suppo
vector machines (SVMs). The SVM is a supervised machine learnin
algorithm that can learn the complex relationship between a group
variables (ie, the vector vl) and the presence or absence of a class fro
an ensemble of examples called the training set.28 Once the SVMmod
has been built from the example cases, it can predict the class of an u
seen case with a confidence score (called computer score thereinafte
The group of variables feeding SVMs consisted of the responses (i
energies) of the multiscale Riesz filters in each of the 36 anatomical r
gions of the lungs (Fig. 3). The size of the vector vl regrouping the r
sponses of the 6 Riesz filters at 4 scales from the 36 regions w
equal to 864.

To compare Riesz wavelets with other features that could captu
the radiological phenotype of diffuse lung disease, 2 different featu
groupswere extracted for each region to provide a baseline performanc
15 histogram bins of the gray levels in the extended lung windo
[−1000; 600] Hounsfield units (HU) and 3D gray-level co-occurren
matrices (GLCM).29 Statistical measures from GLCMs are popular te
ture attributes that were used by several studies in the literature
FIGURE 2. Second-order Riesz filters characterizing edges along the main im
online in color at www.investigativeradiology.com.

© 2014 Wolters Kluwer Health, Inc. All rights reserved.
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characterize the morphological properties of lung tissue associated wi
interstitial lung diseases.16,17,20,21 They consist in counting the c
occurrence of voxels with identical gray level values that are separate
by a distance d, which results in a co-occurrence matrix. Eleven statisti
were extracted from these matrices29 as texture attributes. The choic
ofd and the number of gray levels were optimized by considering valu
in {−3; 3} and {8, 16, 32}, respectively. The size of the vector of attr
butes vlwas 540 for the gray-level histogram attributes (calledHU ther
inafter) and 396 for the GLCM attributes.

RESULTS
A leave-one-patient-out cross-validation evaluation was used

estimate the performance of the proposed approach. The leave-on
patient-out cross-validation consisted of using all patients but 1 to tra
the SVM model and to measure the prediction performance on the r
maining test patient. The prediction performance was then average
over all possible combinations of training and test patients. Receiv
operating characteristic (ROC) curves of the system's performance
classifying between classic and atypical UIP are shown in Figure 4 f
different feature groups and their combinations. The ROC curves we
obtained by varying the decision threshold between the minimum an
age directions X, Y, Z and 3 diagonals XY, XZ, and YZ. Figure 2 can be viewed
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FIGURE 3. The 36 subregions of the lungs localized the prototype regional distributions of the texture properties. Figure 3 can be viewed online in color
at www.investigativeradiology.com.

Depeursinge et al Investigative Radiology • Volume 00, Number 00, Month 2015
the maximum of the score provided by the SVMs. A maximum ar
under the ROC curve (AUC) of 0.81 was obtained with the region
Riesz attributes, which suggests that prediction was correct for mo
than 4 of 5 patients. The performance of HU and GLCM attribut
was close to random (0.54 and 0.6 for HU and GLCMs, respectively
On the other hand, predictive SVM models based on the responses
the Riesz filters, averaged over the entire lungs, had an AUC of 0.72

Our system's performance was also compared with the interpret
tions of 2 fellowship-trained cardiothoracic fellows, each having 1 ye
of experience. Interobserver agreement was assessed with the Cohe
κ statistics30 and the percentage of agreement (ie, number of times th
2 observer agreed). The comparisons are detailed in Tables 3 and
The operating points of the 2 independent observers are reported
Figure 4 (top right). A detailed analysis of the 6 cases that were mi
classified by our system is shown in Table 5 with representative C
images, including predictions from the computer and the 2 fellows com
pared with the consensus classification. The system predicted 2 class
UIP cases as atypical UIP and 3 atypical UIP cases as classic UIP. A com
prehensive analysis of all 33 cases is illustrated in the Supplement
Table, Supplemental Digital Content 1, http://links.lww.com/RLI/A18
FIGURE 4. The ROC analysis of the system's performance. Classic UIP is th
lung tissue atlas. Three-dimensional Riesz wavelets provide a superior AUC o
approach based on the global tissue properties and comparison of the com
functions of the computer score for classic (red) and atypical UIP (blue) ba
highlighted in the upper right subfigure. Atypical UIP is associated with a n
specificity. Figure 4 can be viewed online in color at www.investigativeradi

4 www.investigativeradiology.com
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Overall, 7 incorrect predictions were made by the fellows and 6 inco
rect predictions by the computer. The fellows and the computer mad
only 2 common errors (cases 1 and 13).
DISCUSSION
We developed a novel computational method for the automate

classification of classic versus atypical UIP based on regional volume
ric texture analysis. This constitutes, to the best of our knowledge, a fir
attempt to automatically differentiate the UIP subtypes with comput
tional methods. An SVM classifier yielded a score that predicts if th
UIP is classic or atypical. The classifier was based on a group of attr
butes that characterize the radiological phenotype of the lung pare
chyma, specifically the morphological properties (ie, texture) of th
parenchyma. Because diffuse lung diseases can vary in the distributio
and severity of abnormalities throughout the lungs, we extracted o
quantiative image features from 36 anatomical regions of the lung. T
our knowledge, adding this spatial characterization to the computation
model is also innovative, and it is particularly relevant for assessin
diffuse lung disease.
e positive class. Left, Comparison of various feature groups using the digital
f 0.81. Right, Importance of the anatomical atlas when comparedwith an
puter's and cardiothoracic fellows' performance. Bottom, Probability density
sed on regional Riesz texture analysis and the computer's operating point
egative score, which implies that positive scores predict classic UIPs with high
ology.com.
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TABLE 3. Interobserver Agreement (Cohen κ Statistics)

Cohen κ Consensus Fellow 1 Fellow 2 Computer (Regional Riesz Texture Analysis)

Consensus 1 — — —
Fellow 1 0.629 1 — —
Fellow 2 0.569 0.9374 1 —
Computer (regional Riesz) 0.633 0.506 0.569 1

Investigative Radiology • Volume 00, Number 00, Month 2015 Classification of UIP Using Texture Analysis
System Performance and Comparison With
Chest Specialists

The proposed approach successfully predicted UIP subtypes f
more than 4 of 5 patients (AUC, 0.81), with high specificity for class
UIPs. This performance is encouraging and suggests that an automate
system may be useful in routine clinical practice for radiologists wi
limited experience in interpretation of diffuse lung diseases. The d
tailed case analyses (see Supplemental Table, Supplemental Digit
Content 1, http://links.lww.com/RLI/A189) reveal that, with the exce
tion of 1 case (case 20), the computer score was able to sort and grad
the patients from highly atypical (eg, patients 2 and 3) to classic (eg, p
tient 33). The observer agreement between the computer and the co
sensus was associated with a κ value of 0.63 and a percentage
agreement of 81.82, which is considered as being substantial in the l
erature.31 The performance of the computer was found to be compar
ble with that of the cardiothoracic fellows with 1 year of special
training (Fig. 4, top right). The agreement between each of the 2 fellow
and the computer was moderate (ie, 0.51 and 0.57 κ values and 75.8
and 78.8% agreement) when compared with their excellent interread
agreement (ie, κ value and percentage of agreeement of 0.94 and 97%
respectively). However, the agreement between each of the fellows wi
the consensus classification (our criterion standard) is considerab
lower (ie, 0.63 and 0.57 κ values and 81.8% and 78.8% agreement). I
terestingly, the agreement between the computer and the consensus w
comparable with the agreement between the fellows and the consensu
suggesting that, although the algorithm can still be improved in terms
agreement with the consensus, the current method performs at least
well as cardiothoracic fellows. The performancewas also consistent wi
the interreader agreement between the 2 expert radiologists (ie, 4 an
8 years of experience, κ value of 0.67) reported by Assayag et al13

their study. Because the target application for this algorithm is for ge
eral radiologists, the proposed system could considerably improve the
performance, a study which we plan to undertake.

Detailed Case Analysis of the System's Performance
Our cohort had a much higher proportion of atypical UIPs a

counting for more than half the cases, which likely reflects a selectio
bias. In current practice, only cases that are atypical have histologi
pathologic confirmation, which was required for this cohort analysi
Many of the cases had subtle findings that required adhering ve
strictly to the guidelines for classification by the consensus, whic
may account for 3 of 6 erroneous predictions of atypical UIP by th
TABLE 4. Interobserver Agreement (Percentage of Times That the Ob

% Agreement Consensus Fellow 1

Consensus 100 —
Fellow 1 81.82 100
Fellow 2 78.79 96.97
Computer (regional Riesz) 81.82 75.76

© 2014 Wolters Kluwer Health, Inc. All rights reserved.
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computer (see Table 5 and the Supplemental Table, Supplemental Digit
Content 1, http://links.lww.com/RLI/A189). We believe that the alg
rithm would perform better in a real-world setting, which does not r
flect unusual cases referred to a quaternary academic institution.

Erroneous predictions of classic UIP by the computer occurre
in 2 patients (patients 24 and 27) where bronchiectasis was mistake
for honeycombing (Table 5). This can be a difficult task even for exp
rienced chest radiologists, but it will constitute a target for further im
provement of the system. One patient with diffuse disease witho
definite basilar predominance was also misclassified as classic U
by the computer.

Overall, 7 incorrect predictions were made by the cardiothorac
fellows and 6 incorrect predictions by the computer. Combining the
predictions results in only 2 incorrect predictions of 33 (ie, 94% corre
predictions), demonstrating the potential benefit of computer-assiste
diagnosis in the setting of UIP.

Comparison of the Quantitative Image Features
The gray-level histograms (ie, HU) failed to predict the UIP su

types, and 3D GLCMs provided a slightly better specificity for classic
UIPs. The 3D Riesz wavelets provided an AUC of 0.81, which w
found to be higher than that of 3D GLCMs and HU. The combinatio
of Riesz and HU did not lead to a performance improvement. Th
can be explained by the fact that the distinction between tissue types a
sociated with UIP requires a fine characterization of the volumetr
morphological tissue properties (ie, 3D texture) that only 3D Rie
wavelets were able to extract. The prototype gray-level distributio
of ground glass, reticular, and honeycombing may not be sufficient
distinct to accurately discriminate among them, as shown in Figure
The comparison between global and regional texture analysis (Fig.
right) highlights the importance of localizing tissue texture propertie
which is consistent with the medical knowledge.1

Overall, we believe that our automated system may be useful
general radiology practices, accounting for the majority of sites whe
patients with IPF are initially examined, to accurately identify patien
with classic UIP for which an unnecessary surgical biopsy can b
avoided. The high-resolution imaging of lung disease afforded b
modern-day CT provides accurate 3D anatomic/pathologic fidelity
patients with classic UIP features. A confident CT diagnosis of class
UIP can eliminate the need for an invasive surgical biopsy to confir
this diagnosis; this underscores the importance of an accurate and re
able interpretation of the CT examination. This task is often challen
ing, particularly in less-specialized practice centers without access
servers Agreed)

Fellow 2 Computer (Regional Riesz Texture Analysis)

— —
— —

100 —
78.79 100

www.investigativeradiology.com 5

authorized reproduction of this article is prohibited.

http://links.lww.com/RLI/A189
http://links.lww.com/RLI/A189
www.investigativeradiology.com


TABLE 5. Detailed Analysis of the 6 Cases That Were Missclassified by Our System

Coronal and axial views of the lung parenchyma in computed tomographic scans are shown with a window level of −500 HU and a width of 1400 HU.

UIP indicates usual interstitial pneumonia.

Images can be viewed online in color at www.investigativeradiology.com.
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Investigative Radiology • Volume 00, Number 00, Month 2015 Classification of UIP Using Texture Analysis
experts experienced in interstitial lung disease. Nevertheless, reductio
of needless invasive biopsies is desired when possible to reduce cos
and, more importantly, to avoid unnecessary morbidity/mortalty in p
tients with UIP.We recognize several limitations of the current work, i
cluding the small number of cases included in the study and the use of
very simple digital atlas of the lung anatomy. Future work will includ
validating our results in an independent data set and performing r
gional learning of 3D rotation-covariant texture models of norma
ground glass, reticular, and honeycombing.27,31
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