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Microgrids present the challenge to reach a proper balance between local
production and consumption, in order to reduce the usage of energy from external
sources. This work presents a data-intensive solution to predict the energy
behaviours. Thereby, control actions can be carried out such as decrease heating
systems levels and switch off low-priority devices. For this purpose, this work
has deployed an Advanced Metering Infrastructure (AMI) based on the Internet
of Things (IoT) in the Techno-Pole testbed. This deployment provides the data
from energy-related parameters such as load curves of the overall building through
Non-Intrusive Load Monitoring (NILM), a wireless network of IoT-based smart
meters to measure and control appliances, and finally the generated power curve
by 2000 square meters of photovoltaic panels. The prediction model proposed
is based on recognition of electrical signatures. These electrical signatures have
been used to detect complex usage patterns. The modelled patterns has allowed to
identify the work day of the week, and predict the load and generation curves for
15 minutes with an accuracy over the 90%. This short-term prediction is allowing
us to carry out the proper actions in order to balance the microgrid status (i.e.,

get a proper balance between production and consumption).
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1. INTRODUCTION

The balance between produced and consumer power is
gaining special attention during the last decade, when
a wide range of experiments and net-zero buildings are
being deployed.

This interest on optimize the energy usage, and focus
on renewable energies, is coming as a consequence of
the increase of costs of the fossil fuels, and the negative
consequences for the nature of them.

These factors have driven research of solutions
for sustainability in energy production, distribution,
storage, and consumption.

In energy distribution, new “smart metering”
solutions have been proposed, based on the idea

that exploiting properly data on power generation,
distribution and consumption, a substantial increase in
efficiency is achievable [1].

This data exploitation requires the capabilities
to provide bidirectional communication with the
appliances, production plants, and the smart meters.
For that reason, the Internet of Things plays a crucial
role for the development of the energy distribution in
microgrids.

Examples of the relevance of the communications
have been discussed in the DINAR project. DINA
project has explored technological aspects of the
coordination within the low-voltage. For thus purpose,
a communication infrastructure between different

The Bidirectional Energy Management Interface
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FIGURE 1. Example in our testbed (Techno-pole) of the
necessity of load balancing of the microgrids.

(BEMI) has been developed as a communication
interface to each other and the utility. Thus energy
consumption and generation can be coordinated.

For these communications, the Internet of Things
aims at facilitating the communications. In particular,
smart metering is one of the initial and more extended
use cases for the Internet of Things [2]. Several solution
have been deployed with ZigBee [3], 6LoWPAN [4, 5],
and ZigBee-IP [6]. In addition, Wireless Smart Utility
Network (WI-SUN) is also extended with new IoT-
related technologies such as IEEE 802.11g (subGhz)
[7], and presenting a new generation of opportunities
to monitor the energy consumption at different levels,
i.e., overall consumption and also the independent
consumption from specific devices.

An essential goal of the Internet of Things is to have
ability to identify devices (using identification technol-
ogy), and allow local computing and communication
among different smart devices [8]. These essential goals
are also keys for the future smart grid, and of particular
importance for microgrids.

A microgrid is formed by the electric grid and
connected devices, e.g. in a group of offices or
apartments. Microgrids are on the low voltage level
(usually 400V in Europe), in contrast to the high and

middle voltage grids, used for power transmission and
distribution [9]. The challenge for smart grids is that
the topology of the grid will change dramatically due
to the integration of microgrids. In current power
distribution grids the energy is still transmitted from a
few large power stations to a large number of consumers.
The producers of energy are located at the highest
level. The energy is distributed across different layers,
depending on the voltage level used for transportation.
There exist the extra-high, the high, the middle and the
low voltage layers. The grid is hierarchically structured,
and thus is the control of the grid.

For that reason, the needs for the communication,
prediction, and coordination are crucial for the success
integration of the microgrids in the smart grid.
The necessity of load balancing of the microgrids is
demonstrated in the Figure 1, where can be found
the de-synchronization between the generation and
consumption in our installations. The objective is
to reach a proper coordination between the local
consumption and production in order to avoid external
costs, i.e., consume from the grid.

This paper we investigate the abilities of microgrids
to reduce energy costs using forecast information.

Inside a building we have constant demanding
devices, which define our baseband, and also eventual or
periodical devices, which present peak-loading events.

This work extracts the usage patterns for electricity
out of load curves by using classifiers that extract the
load curve of one device using single signature and
the global signature. In addition, the Ecowizz smart
meters, based on ZigBee, from the partner of the project
Gerocco 3 are also used to collect information of the
power consumption for specific devices.

Energy consumption and production forecasting is a
challenging research topic. Even though it is possible
to generate predictions on a very high level, e.g., in
form of standard load profiles [10, 11], it is still very
challenging to create forecasts at the level of microgrids
or devices. This is due to the high non-linearity of
load curves of devices. Typical stochastic forecasting
methods like ARIMA assume a (quasi-) linear model in
the time series for which a forecast should be generated.

The large number of consumers typically minimize
these non-linear effects of each devices, so that forecasts
for larger grids can be generated. Currently techniques
to create forecasts in microgrids are based on neural
networks, naive Bayes [12], or hybrid methods [11, 13,
14], because these methods can handle non-linearity
better than stochastic models.

This work presents an approach to create forecasts
for microgrids. This approach is based on extracting
usage patterns for electricity out of load curves. The
identification of the different patterns allows to create
classifiers that can identify devices in the load curve.

To create such classifiers we need to measure the

3EcoWizz Smart Meter - http://www.ecowizz.net/

The Computer Journal, Vol. ??, No. ??, ????



I-BAT: A Data-intensive Solution to Predict Energy Behaviours in Microgrids 3

overall load of a microgrid. In addition, we are
measuring the load curves by single devices (with
ZigBee smart meters) in order to refine our classification
scheme by collecting usage information of smart
devices, which can be identified and can record their
consumption.

For the purpose of measure the overall load of the
microgrid, this work has been carried out with the
collaboration of Sierre Energy, which has offered all the
interaction with the meters that has been deployed in
the Techno-Pole testbed. In addition, another partner
and collaborator for this project has been the company
Gerocco, specialized in Internet of Things-based smart
meters (Ecowizz ZigBee smart meter).

This hybrid approach between overall load and
specific appliances load will allow to provide a detailed
classifier of the different appliances, that avoid the need
to continue using a smart meters per appliance in the
future deployments.

With this classification scheme of a specific grid we
can create a symbolic model of the energy consumption.
In this model the non-linearities do not exist anymore,
and we can find usage patterns. An example of such a
pattern is that the coffee machine is turned on between
7:30 and 8:00 each morning during working days, with
a given distribution within the interval. Based on this
symbolic forecast and the identified patterns we can re-
translate our symbolic forecast into load profiles again.

This work is contextualized in the I-BAT Switzerland
Project 4. This project is a convergence of expertise
in several areas of energy management. The objective
of this work has been to build a modular and
intelligent information system capable of regulating
futures sub-networks of the power supply grid, i.e.,
microgrids. For this purpose, many static or dynamic
energy parameters are taking into account in order
to predict the consumption. The interest to predict
the consumption is to be able to control in the future
the energy consumption of buildings, and the most
important to regulate the cooperative energy behaviour
of microgrids.

In details, the data-intensive solution has as inputs
the low frequency parameters (load curves from
the photovoltaic plant provided by ELKO, and the
grid consumption provided by Sierre Energy) and
high frequency parameters (device measures from the
Ecowizz smart meters).

The work presents, on the one hand, how the different
devices are classified based on recognition electrical
signatures defined by a clustering solution based on k-
nearest neighbours (knn) algorithm, and on the other
hand, how once the devices are identified, patterns can
be learned among different days in order to classify
the consumer behaviour per days and forecast load
curves during the following minutes. The short-term
prediction of the load curves provide to the system the

4I-BATs project - http://iig.hevs.ch/valais/i-bats.html

FIGURE 2. Microgrid integration in the Techno-pole.

information required to carry out a control of the smart
appliance, and offer the feedback to the users, that
ensure to reach a better balance between the production
and the consumption.

Thereby, this 15 minutes forecast allows to minimize
the amount of energy that needs to be consumed from
utility companies, minimizing peak loads, which can
be the base for pricing or minimizing the total cost of
energy.

2. ARCHITECTURE

The Figure 2 presents an overview of the microgrid
integration deployed in the Techno-Pole testbed inside
of the Sierre Energy Smart Grid.

For the deployment of this testbed has been required
the integration of multiple metering devices from
different vendors. These metering devices offer the
interface between the local microgrid and the grid of
the utility, the microgrid and the photovoltaic plant,
and finally the end-user appliances.

In details, the integrated meter devices are presented
in the Figure 3. In addition, new generation and IoT-
based smart meters to measure specific appliances, such
as the ZigBee smart meters from Gerocco.

2.1. Information System

The Figure 4 presents the information architecture
designed in I-BAT. Since, the solution proposed is data-
intensive, one of the main basis of the proposal has been
the gathering of the data at different levels.

One of the major goals of the Internet of Things is
to provide common standards and semantic description
of the data through RESTFul / WebServices interfaces,
that facilities the development and deployment of these
kind of solutions.

In this case, the ZigBee Ecowizz smart meter) have
offered an easier and more flexible integration that
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FIGURE 3. List of smart meters integrated.

the rest of industrial smart meters, providing data
formatted in ZigBee profiles, CSV, and JSON.

The developed information system, in addition to
provide de functions for data collection, this also
analyses and model the energy data. Specifically, this
information system has been designed and developed
to offer the capability of controlling the energy
consumption of buildings to be able to understand how
to predict the energy behaviour of a microgrid and
regulate it.

Regarding to get access to their power consumption.
of data from the different companies, the approval
from the different companies located at the Techno-pole
building have been required.

For the presented evaluations, the following compa-
nies have responded positively and participated in this
testbed: Mikado, Eticolle SA, Schoechli printing, Com-
puter T.I., Netplus.ch SA, Telecom Watchers, Tech-
noArk SA, Consultec, ICARE, HES-SO Valais-Wallis,
and Canal9.

The system has been adapted to support different
communication protocols. Since, multitude of sensors
that vary by location, frequency, environment, data to
be collected and the type of input and output of unit.

In addition, we found it necessary to involve all
stakeholders in the energy chain, from producer to final
consumers through the distributor.

It is important to add that the company Consultec,

FIGURE 4. I-BAT architecture.

FIGURE 5. Transformer deployed in the Techno-pole.

the administrator of the EPP Techno-Ple, supports
this approach and we will provide information on
consumption related to heating and lighting.

Specifically, for the data gathering from the
information system has been carried out on three levels:

1. Level 1: Data Recovery at the transformer (see
Figure 5 and photovoltaic panels (see Figure 6).

• Data: active and reactive power on the three
phases of a transformer active power level
panels

• Sampling frequency: second.

2. Level 2: Data Recovery at the Techno-Pole
offices (see Figure 7, and retrieving data from the
largest consumers within the Techno-Pole (TP)
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FIGURE 6. Production deployment based on solar panels
(photovoltaic).

FIGURE 7. Installation deployed to retrieve the data from
each company electric meter in Techno-pole.

(see Figure 8).

• Data: Active power
• Sampling frequency: second

3. Level 3: Retrieving data within companies.

• Data: active power, reactive power, number of
people, outside temperature, inside tempera-
ture

• Sampling frequency: second

An interface and an API have been developed to
visualize and access to all the data connected to the
information system.

Finally, this information system contains the
elements necessary for the storage of data NO-SQL,
since the data is formatted in JSON. The Figure 9
presents the data storage infrastructure deployed.

2.2. Techno-pole

The Figure 10 presents the areas monitored. The
area TP10 is monitored at their different power energy
phases, and in the area TP4 is also monitored the
different phases. In addition, the brown rooms from

FIGURE 8. Deployment to retrieve the data from each
company electric meter in Techno-pole.

FIGURE 9. I-BAT information system architecture based
on No-SQL distributed databases built on MongoDB.

TP4 are also monitored specific appliances with the
Ecowizz Smart meter.

3. RECOGNITION OF ELECTRICAL SIG-
NATURES

Electrical signatures recognition techniques proposed
to monitor appliance consumption, non-intrusive ones
(called also NILM [15]) are of particular interest,
since they do not require specialized, costly hardware
and installation and maintenance of a sensor network.
Moreover, they adapt over time in changes in
households (such as changes in appliance number
and type) without requiring new installations or
reconfiguration of existing hardware and software. The
extensive deployment of smart meters which is planned
in many countries for the near future will enable a
large scale deployment of NILM techniques [16]. Such
deployment will make available measurements of the
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FIGURE 10. Techno-pole floorplan, where TP4 and TP10
areas are being used as part of the testbed.

total active and reactive power consumed, typically
sampled at low frequencies, allowing non-intrusive load
monitoring without the use of additional hardware.

NILM methods have been first proposed in [17], and
they are typically structured in three phases: feature
extraction, events detection, and events classification.
They make use of a database of electric signatures
of appliances, and they are based on the measure
of the total active power consumed, sampled at
frequency of one Hertz. Later methods [18, 19] try to
decrease the duration of the training period. Indeed,
the main drawbacks of these techniques reside either
in the need of a learning phase requiring intrusive
measurements, and/or on the fact that they cannot
detect appliances whose power consumption patterns
vary drastically over time (e.g., washing machines,
whose power consumption varies substantially during
a washing cycle). Indeed, a fine granularity and
a good accuracy in load disaggregation are crucial
in order to enable useful feedback to users, to set
up appropriate measures for changing consumption
patterns, and to enable detection of anomalies and
appliance malfunctioning. Many of the techniques
proposed in order to overcome these drawbacks imply a
substantially higher sampling frequency, and therefore
more expensive hardware [21, 22].

The described NILMs techniques have demonstrated
the capability to identify different appliances based
on the total power consumption (measure three-phase
voltage, current, active and reactive power).

The following subsections describe the process carried
out to recognize the electrical signatures from the
different appliances.

3.1. Baseband detection

We started by detecting the baseband. Baseband is
defined by the continuous power consumption on a
phase. This represents the devices such as routers,
cameras and other appliances that are continuously

FIGURE 11. Filter median developed for KNIME.

FIGURE 12. Filter median results to detect the baseband.
x-axis: time in seconds, y-axis: power in Watts.

switched on.

It has been calculated obtaining the minimum on
each phase after median filter. The median filter has
been implemented with the KNIME platform.

KNIME platform (the Konstanz Information Miner)
is an open source data analytics, reporting, visualiza-
tion and integration platform. KNIME integrates vari-
ous components for machine learning and data mining
through its modular data pipelining concept. One of the
major advantages of KNIME is its abstraction through
a graphical user interface that allows assembly of nodes
for data pre-processing, for modelling and data anal-
ysis and visualization. Thereby, KNIME offers a very
powerful and intuitive environment based on workflows
instead of classic scripts or low level programming lan-
guages.

The integration of KNIME is opening the integration
of other several technologies and tools from artificial
intelligence and data mining research areas in order
to make more powerful the capabilities from the
deployment, make easier the access and use of
the infrastructure, homogenize the access to the
services/resources/devices.

The Figure 11 presents the implementation over
KNIME of the filter median. A partial result for a
specific time window result is presented in the Figure
12, where the baseband is equal to 270W. This is
calculated dynamically in order to adapt to different
seasons, evolve to the presence of new offices, people,
and appliances.
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FIGURE 13. Event detection. x-axis: Time (s), y-axis:
Power (W).

3.2. Event detection

The methodologies applied for this process are, on the
one hand, median filter of size 5, i.e., a minimum
difference of 5W,

An event happens each time that an appliance is
switched on or off.

This remove the high frequency derived signals and
also the differences under 5W, in order to avoid noise
and false positives.

The Figure 13 presents an example of the result from
the event detection filter.

3.3. Event classification

Analysis of the active power and reactive power ( ∆P
∆Q )

allows a good classification of large consumers.
We refer to the work of Georges Hart, which consists

on detecting jumps of active and reactive power with
regards to a predefined threshold. We also study
the event recognition with regards to the frequency of
data collection. We initially adjust the threshold of
active and reactive power to 50W and 15VAR, and
subsequently to 15W and 5VAR to study the impact
of transitional effects on electrical signals. To train
and test different algorithms, the data is normalized
according to the min-max method. To allow either a
study of consumed energy, or a study of available power,
the data is then denormalized.

The Figure 14 presents the power-based signature
space based on the Techno-pole measurements. This
has been built a clustering applying a Knn algorithm.
It can be seen a very similar signature space to de
described in [20] from an experiment in a household in
USA, with the main differences that the main number
of appliances for buildings appear in the reactive-power
since they are for motors, and pumps.

The electrical signals present interferences that we
must identify on the global diagrams as well as on
individual connected appliances diagrams. We use
a median filter on each entry signal to remove high
frequencies. Furthermore, the tolerance thresholds for
event detection can also filter part of the noise. For the
training data set, we have added confidence intervals
that are the mean of the extremes of the appliances

FIGURE 14. Power-based signature space detected in
the Techno-pole. x-axis: Real power (W), y-axis: Reactive
Power (VAR).

FIGURE 15. Heat pumps event pattern.

connected to our information system. This removes
the possibility of outliers on the training set: the
data taken within this confidence interval represent the
representative events panel of each appliance that we
wish to detect. They are:

• (Heat) Pump: event on {200 Watt; 1400 Watt} ;
event off {-1400 Watt; -200 Watt}.

The algorithm for detecting the heat pump is
based on the following characteristics observed
on different heat pumps, a three-phase device
(comparing 3 phases) whose duty cycle is at least 5
minutes (morphological opening) and whose active
power measured by each phase is greater than
500W (500W threshold) (see Figure Figure 15).

• (Cold) Freezer: event on {50 W; 250Watt}; event
off {-200 W; -50Watt}.

The operation of refrigerators or freezers is
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FIGURE 16. Freezer detection model based on a Gaussian
Mixture Model.

virtually cyclic. Their consumption can be
characterized by an ON period and an operating
power and time. Using these three parameters
estimated and modelled by a Gaussian Mixture
Model (GMM), we look in the list of events those
which can most probably belong to the cycle of the
refrigerator or freezer. The Figure 16 presents the
model developed in KNIME.

• (Appliances) Event on {1000 Watt; 3000 Watt};
event off {-3000Watt; -1000 Watt}.

4. ENERGY BEHAVIOURS PREDICTION

The information system provides the concept of
dynamism thanks to the power consumed at time t.
By correlating this information with the parameters
collected and adding the right algorithms, we can
predict the power at time (t + 15) minutes. From these
data, the control system will then take over and act on
the microgrid to regulate its consumption or use the
smart grid to apply energy. To control multiple tracks
are being considered as a pure offset.

Once all the system and data was integrated. In
addition to the classification of different appliances, it
has been analysed the overall power consumption curve.

The prediction (or forecasting) of the power
consumption can be established by the ARIMA method
(linear time series), when exist a large number of
consumers, but for microgrids such as in our testbed, it
is commonly used neural networks or hybrid methods.

The initial objective to understand and predict the
energy behaviours. For this purpose, we have carried
out a prediction of the week day.

The recognition capabilities and different between
weekday and weekend day presents an affordable
approach. However, the recognition becomes more
complex between the different days of the week, some
seeming to have larger patterns.

In details, two different evaluations have been carried
out to classify the day based on the energy patterns. On
the one hand, an analysis limited to 2 months of data,
and on the other hand 5 months of data.

The first prediction model have presented a result of:

FIGURE 17. ROC Curve for the prediction of the week
day.

• Prediction week / weekend: A mean accuracy of
90%.

• Prediction day of the week: A mean accuracy of
55%.

This analysis has been focused on the data from
the TP4/TP10 area offices. The sampling frequency
is equal to 1 s, and the total analysis time has been of
2 months (1 month of training and 1 months of test).

These results were low, for that reason, it was
extended the test to 5 months, in order to offer a more
extended training set.

The results reached by the data-intensive predictive
model of electricity for offices are:

• Prediction week / weekend: A mean accuracy of
the 98%.

• Prediction day of the week: A mean accuracy of
the 65%.

This analysis has been focused on the data from
the TP4/TP10 area offices. The sampling frequency
is equal to 1s, and the total analysis time has been of 5
months (3 months of training and two months of test).

The Figure 17 presents the Receiver Operating
Characteristic curve (or ROC curve). This plot presents
the the true positive rate against the false positive rate
for the different possible cutpoints of the diagnostic
test for the prediction of the week days, during one
of the weeks, which has presented a 87.49% accuracy.
In addition, the Figure 18 presents the confusion matrix
for one of the tests, which has offered a 88.93% accuracy.

Finally, it has been evaluated the prediction of the
power consumption in short-term. The goal of this work
was to reach a suitable prediction for 15 minutes (t+15),
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FIGURE 18. Confussion matrix.

FIGURE 19. Predictor developed over KNIME based on
Naive Bayes classifier.

in order to be able to control some of the devices, in
order to balance the microgrid status (i.e., get a proper
balance between production and consumption).

For this purpose, a Naive Bayes classifier has
been developed on the KNIME platform (see Figure
19). This algorithm has a input the low frequency
parameters (load curves), high frequency parameters
(EcoWizz smart meters measures), and optionally can
be added external factors such as weather forecast.

The outputs are the forecast load curves (consump-
tion), production curve, and optionally, it could also
in the future give the instructions for the controllable
smart devices that needs to be switched on or off dur-
ing the coming 15 minutes, in order to balance the load
and production curves.

The results presented in the Figure 20 shows an
accurate prediction of both the load curve for the
estimations for the next 15 minutes with an accurate
over the 90

5. CONCLUSIONS AND FUTURE WORK

Microgrids can apply techniques like forecasting,
planning and coordination to minimize their energy
costs. Some fundamental forms of smart microgrids
consumption management are techniques currently
investigated in the context of the Internet of Things.
Devices become smart by adding local computing and
communication abilities to them.

The presented work has described the developed
and deployed testbed. The development of this

FIGURE 20. Prediction of the power consumption for
short term. X-axis: relative time, y-axis (Kwh), red bars:
predicted consumption, and blue bars:real consumption.

FIGURE 21. Visualization of the feedback data provided
in the different screens distributed in the common areas of
the bulding.

complex system with a full-scale testing has required the
coordination and support from multiple institutions.
For this, we have the opportunity, thanks to the
contribution of Sierre Energy and officials of Techno-
Pole in Sierre, to collect data of buildings as well as
the network of 2000 square meters of solar photovoltaic
panels producing electricity.

We have proposed a hybrid non-intrusive approach
which use the real/reactive power to identify the
class, a priori information and the Training/Testing
Generalization. We have more than 85 percent of
recognition on the studied devices.

In addition, intrusive IoT-based devices such as the
ZigBee smart meters has been integrated in order to
create a prediction model that allow to carry out the
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proper actions with a time window of 15 minutes, in
order to reach a proper load and production balance.

Another consequence of this project has been the
development of a website for viewing collected data on
the site energy test Techno-Pole (see Figure 21). This
information is presented in multiple screen deployed in
the common areas of the building, in order to evaluate
in long term the impact on users behaviours.

The ongoing work is focused on the Internet of
Things scope, in order to integrate legacy and non-
IP devices [23, 24, 25]. The Internet of Things will
bring several opportunities in the future to build unified
frameworks where all non-IP devices can discuss inside
an holistic IPv6 network. Thereby, all the devices
are interoperable through WebServices, i.e., offering a
Service oriented information system, where the Legacy
Devices are presented as Legacy Device as a Service
(LDaaS).

Finally, future work will be focused on the integration
with smart cities infrastructure and electric vehicles
[26].
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