
Business Process Fragmentation for Enhancing Process

Modeling
Eliane Maalouf

HES-SO Valais Wallis
IIG, Technopôle 3, 3960 Sierre

+41 27 606 90 02

eliane.maalouf@hevs.ch

Marcel Di Zuzio
HEIG-VD

Avenue des Sports 20
CH-1401 Yverdon-les-Bains

dizuzio@infomaniak.ch

Maria Sokhn
HES-SO Valais Wallis

IIG, Technopôle 3, 3960 Sierre
+41 27 606 90 16

maria.sokhn@hevs.ch

ABSTRACT

Business Process Management (BPM) is accepted to be an

efficient approach to capture processes in order to improve

operational aspects of an enterprise. Business process modeling

and design is the first step in BPM. This paper presents a process

fragmentation approach that serves to generate process fragments

ready for reuse during modeling in a semantic modeling tool. The

fragmentation is based on the Refined Process Structure Tree

which is an algorithm to decompose processes based on their

workflow graphs.

Categories and Subject Descriptors

H.4.1 [Information System Applications]: Office Automation---

Workflow management; J.1 [Computer Applications]:

Administrative Data Processing---Government.

General Terms

Management, Design, Algorithms

Keywords

Process Fragmentation, Process Decomposition, Semantic Web

Technologies, Business Process Modeling, Process Auto-

completion.

1. INTRODUCTION
Business process modeling is the first phase of the Business

Process Management lifecycle and it consists of documenting and

designing the process by describing it using, among others, visual

elements in computer based graphical tools. Van der Aalst states

that in order to support design and management of processes, old

processes need to be available for reuse [12]. Additionally, [3]

states that the learning curve is still steep for users who are

inexperienced in process modeling even if the tools available

provide a graphical interface. The authors mention that lack of

support during modeling is a contributing factor to this problem.

Marcovic et al. [7] defined the requirements to enable reuse of

existing knowledge with the following: rich process description,

intuitive user request specification, query language with

expressive power, query mechanism, flexibility, ranking and

computational efficiency. To answer those requirements and

overcome the limited support to the users available in existing

business process modeling applications, this paper will present the

ongoing research on a semantic graphical business modeling tool

and more specifically on its process decomposition module. The

tool uses: semantic web technologies [8] (RDF, ontologies) to

enrich and represent business process elements in the database;

SPARQL1 as the query language to query a database of existing

processes for processes that are similar to the user specifications;

weights defined by the user for structural, context and historical

usage similarities measures; ranking of results from most relevant

to least relevant; graphical interface that suggests autocompleting

the process while drawing with functionalities of drag and drop of

process representations into the canvas. In the background of the

auto completion module lays the decomposition module whose

goal is to prepare process fragments that can be added to the

modeling canvas on the fly. The research challenge is to design

and develop a process decomposition approach that allows the

extraction of process fragments useful in the context of auto

completion during process modeling. In the following sections of

this paper are presented the research methodology followed by the

design and development of the process decomposition module

then the preliminary results to end with a concluding discussion

and future works.

2. STATE OF THE ART
The study of the literature shows that, until the time of writing this

paper, there is not a common and widely accepted definition for

business process decomposition as outlined by [2,6]. The terms

“decomposition” and “fragmentation” are often used

interchangeably. Mancioppi etal. [6] defined fragmentation as the

“act of creating process fragments out of one process model by

applying a fragmentation technique according to some

fragmentation criteria.” It is this definition that was considered the

most relevant for this paper’s research work. The fragmentation

criteria and the requirements of the decomposition module

presented hereafter are based on the classification in [6]:

 What input given to the fragmentation: Business processes

written in Business Process Model and Notation 2.0 [10]

(BPMN 2.0). The choice of this format is imposed by the

application domain in which the proof of concept of the tool

will be developed. The domain concerns processes of the

Swiss E-Government where the specification eCH-0158 [1]

recommends the use of BPMN 2.0.

1Query language for RDF; http://www.w3.org/TR/rdf-sparql-

query/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

 Why is the process model fragmented: reuse; the processes

are fragmented into smaller fragments that can be called by

the auto-completion module in the modeling canvas to

complete processes on the fly by suggesting the next best

fragment to use. The suggestions provided to the user by the

modeling tool fall into both categories of subject-based

(structural recommendations: complete with a group of

elements) and position-based (forward recommendations:

complete the next element) in the recommendations

classifications in [5]. Figure 1 shows the flow of the auto

completion and its relation to the process fragments. P1 is an

existing process; P2 is a process being modeled.

 When is the fragmentation performed in the process

lifecycle: modeling phase. In reality the process will be

fragmented just after the end of its design in the modeling

tool and just before saving it into the database in order to

save the whole process along its fragments or when a

modeled process is imported into the system.

 Who and How performs the fragmentation: automated

software. The goal is to allow for fragmentation to happen

without human intervention and integrate with the general

workflow of the modeling tool.

 What output results from fragmentation: the output shall be

a set of fragments in BPMN 2.0 independent from each

other, without overlapping and sufficiently described to be

evaluated in the context of different processes and

transformed with semantic web tools.

The study of the existing literature showed that there are two types

of decomposition: activity decomposition [4] and workflow

decomposition [13, 10, 2]. In the first, fragments are obtained by

aggregating activities without considering their succession and the

links that exist between them; resulting fragments are not

necessarily related to each other. This method is mainly used in

process execution context and is not relevant to this research. The

second method considers the succession of elements in the

process; fragments are made of an aggregation of links and it

results in fragments that can be related to each other by a

successor/follower relationship or parent/child relationship. This

approach is mainly used for process abstraction purposes in

analysis settings. Given these fragments properties this approach

is adequate with the auto-completion needs since it preserves the

relation between fragments. The Refined Process Structured Tree

(RPST) [13], part of the second category of approaches, was

identified as the most elaborate algorithm to define those

fragments. RPST allows the decomposition of a workflow graph

into a hierarchy of sub-workflows that are sub graphs with a

Single Entry and a Single Exit (SESE) of control. The

decomposition is unique and modular and computed in linear

time. A workflow graph of a process is a directed acyclic graph

where the vertices of the graph are the process activity nodes and

the edges of the graph are the transitions between the process

nodes [11]. Since RPST decomposes a workflow graph it is

independent of the modeling language, it is able to decompose

BPMN 2.0 processes once their workflow graphs are generated.

RPST decomposes the process into three levels, Polygons (P1, P2

in Figure 2.(a)), Bonds (B1, B2 in Figure 2.(a)) and Triconnected

graphs (T1, T2 in Figure 2.(a)). These components are connected

to each other through virtual edges (dashed lines in Figure 2.(a))

to form the decomposition tree (Figure 2.(b)). RPST is

implemented in an open source software library called JBPT2.

Figure 1. Auto-completion flow in relation to process

fragments

Figure 2. RPST decomposition: (a) Polygons, Bonds and

Triconnected graphs; (b) decomposition tree; (c) workflow

graph

BPMN 2.0 is a standard [10] to graphically represent the

succession of activities of a process (Figure 3). It defines five

major categories of graphical elements: flow objects, data objects,

connecting objects, swimlanes and artifacts. The process that

results from the design is a XML interchangeable file that could

be interpreted by diverse modeling tools. The standard introduces

an extension mechanism to the constructs of BPMN 2.0. These

extensions will be used in this work to insert metadata into the

generated fragments.

Figure 3. BPMN 2.0 process example

2 https://code.google.com/p/jbpt/

3. APPROACH DESIGN
The aggregate of requirements for the module are: decompose

BPMN 2.0 processes, automatic decomposition, output SESE and

related fragments and transform fragments to RDF. The module

information flow is represented in Figure 4.

Figure 4. Information flow in the decomposition module

The flow starts by parsing the BPMN 2.0 XML process file

(Figure 4.(1)) to create its DOM representation in JAVA objects.

In the same step the module collects and stores BPMN elements

and their identifiers in order to retrieve them later in the flow.

These identifiers and the elements types are then passed to JBPT

to construct the workflow graph of the process (Figure 4.(2)).

These two steps were implemented in a JAVA library called

bpmnFragLib. The workflow graph is then fed to the RPST

algorithm to generate the decomposition tree (Figure 4.(3)). Since

RPST only generates the decomposition tree it cannot be directly

used to extract fragments that can be imported into modeling tools

and manipulated further in the line since the process elements

information that existed in the process file at the beginning is not

preserved. In order to overcome this limitation, the decomposition

tree is fed to the class Recompose Workflow where the fragments

are constructed by traveling the decomposition tree and for each

of its elements it recollects the necessary information from the

original BPMN file using XPATH to rebuild a BPMN 2.0 XML

file for each fragment (Figure 4.(4)). From the decomposition tree

the class also calculates the predecessor and the following

fragments for each fragment and retrieves their identifiers. This

information about predecessors and followers is not directly

retrieved in the decomposition tree and is reconstructed by the

class. The class is able to define multiple predecessors and

multiple followers for each fragment given the relation they have

in the tree. At this point, fragments are similar to complete BPMN

2.0 XML process; they can be imported in modeling tools and

visualized. The decomposition flow proceeds to enrich those

fragments with needed metadata to be used by the modeling tool

that will manipulate those processes (Figure 4.(5)).

Metadata are added in the form of BPMN Extension elements as

mentioned in the section 2.1. The main metadata attributes that

were defined are: NextFragments, PreviousFragments, Size

(number of flow objects in the fragment), ParentProcRpstDepth

(depth of the overall RPST tree gives an idea if the process is flat

or includes multiple decisions then more complex),

rpstDepthLevel (depth of the fragment seen like a sub tree of the

overall process tree), parentProcId (identifier of the parent process

that generated the given fragment) and name (a human readable

identifier of the fragment). These metadata are shown to the user

through a graphical interface and some of them could be edited

manually (Figure 5). The final step of the process is the

serialization of the fragments and their saving on disk in both

BPMN 2.0 XML and RDF format (Figure 4.(6)). The serialization

to RDF is a transformation of the XML file into RDF using a XSL

transformation file. The XSL was created in a parallel research

project and permits the transformation of any BPMN 2.0 into

RDF following the BPMN 2.0 ontology [9]. This transformation

converts the business process from one single construct to more

granular constructs (the process components) that can be queried

and addressed individually. The fragments can then be integrated

into the triplestore along the original processes and can be queried

in the same way through the modeling tool. The XSL file was

extended to include the metadata that were added in this project in

order to transform them to RDF triples and make them available

for querying as well. The classes Recompose Workflow, Generate

Metadata and Serialize are also part of the bpmnFragLib library.

4. PRELIMINARY RESUTLS
The graphical interface was developed to manage the

decomposition process: (Figure 5.(1)) includes a console where

are listed all operations done by the module (Figure 5.(2)). On the

top is mentioned the name of the BPMN process being

decomposed (Figure 5.(3)). It is possible to generate fragments for

multiple processes simultaneously in the case of the selection of a

repository (Figure 5.(4)). It is possible to choose the method of

decomposition (Figure 5.(5)), both methods presented are based

on RPST but one shows the full tree and the other pre-processes

the full tree and removes some trivial segments like individual

process elements and aggregates them with similar contiguous

segments to increase their size and their relevance to the auto-

completion process. Decomposition is launched by clicking on the

“Decompose” button, serialization to XML and RDF is launched

by clicking “Serialize Fragments” (Figure 5.(6)). The XML and

RDF files are gathered in a repository added to the repository

containing the process being decomposed. The global RPST tree

is displayed with its depth level and the number of nodes (Figure

5.(7)) and the tree view (Figure 5.(8)). Every time a fragment is

selected in the tree, its corresponding meta data are displayed

(Figure 5.(9)).

The metadata that can be modified are the name and the score.

The score being information that will be updated by the modeling

tool and estimates the popularity of the fragment. The rest of

metadata (fragment unique id, parent process id, previous

fragments, next fragments, fragment depth, process depth, etc.), is

generated automatically by the decomposition module.

Figure 5. Graphical interface

In total the decomposition module is a set of two JAVA libraries,

the bpmnFragLib that includes the classes presented earlier and

the BpmFragWorkbench library that handles the graphical

interface and its interaction with the bpmnFragLib and the file

system. The process example in Figure 3 was decomposed into the

fragments in Figure 6.

Figure 6. Resulting fragments after decomposition

Figure 6 shows the different granularities that can be retrieved in

the process fragments. In an auto-completion scenario this is

crucial, since for the completion of a decision node for example

(e.g. all elements between g1 and g2 in Figure 6), the user might

want to complete with the whole block including all possibilities,

or chose one or the other branch or even part of a given branch.

Furthermore, the decomposition was tested on real life processes

from the domain of E-Government in Switzerland. These

processes were larger than the example and some had multiple

decision nodes. The first tests showed that the decomposition

works correctly with those processes as well.

5. CONCLUSION AND FUTURE WORKS
In this paper we presented the work done until now on a process

decomposition module aiming to generate fragments for reuse in a

process modeling tool using auto-completion. In the literature,

there does not seem to exist a similar work aiming at fragmenting

BPMN 2.0 processes in an automated manner and then

transforming them to RDF to be used in a semantic environment.

In the future, we aim to validate the results of the decomposition

on a larger number of processes to identify its limitations and then

go further with its integration in the semantic modeling tool being

developed to assess the relevance of the generated fragments to

the user needs.

6. REFERENCES
[1] Fachgruppe Geschäftsprozesse. (2014). eCH-0158 BPMN-

Modellierungskonventionen für die öffentliche Verwaltung.

Online. (2014). link=

http://www.ech.ch/vechweb/page?p=dossier&documentNum

ber=eCH-0158&documentVersion=1.1

[2] Johannsen, F. and Leist, S. (2012). Wand and Weber’s

Decomposition Model in the Context of Business Process

Modeling. Business & Information Systems Engineering,

4(5) (2012), 271-286.

[3] Hornung, T., Koschmider, A. and Lausen, G. (2008).

Recommendation Based Process Modeling Support: Method

and User Experience. Conceptual Modeling-ER.. (2008),

265-278.

[4] Khalaf, R., & Leymann, F. (2006). E role-based

decomposition of business processes using bpel. Web

Services. (2006, September). ICWS'06. International

Conference. 770-780. IEEE.

[5] Kluza, K., Baran, M., Bobek, S., & Nalepa, G. J. (2013).

Overview of Recommendation Techniques in Business

Process Modeling⋆. Knowledge Engineering and Software

Engineering (KESE). (2013), 46.

[6] Mancioppi, M., Danylevych, O., Karastoyanova, D. and

Leymann, F. (2012). Towards classification criteria for

process fragmentation techniques. Business Process

Management Workshop. (2012, January), 1-12. Springer

Berlin Heidelberg.

[7] Markovic, I. and Pereira, A. C. (2008). Towards a formal

framework for reuse in business process modeling. Business

Process Management Workshops. (2008, January), 484-495.

Springer Berlin Heidelberg.

[8] Matthews, B. (2005). Semantic web technologies. E-

learning. 6(6) (2005), 8.

[9] Natschläger-Carpella, C. (2012). Extending BPMN with

deontic logic. Logos-Verlag.

[10] Object Management Group. (2011). Business Process Model

and Notation (BPMN) version 2.0.Online. (2011, January)

link=http://www.omg.org/spec/BPMN/2.0/

[11] Polyvyanyy, A., Smirnov, S., & Weske, M. (2009). The

triconnected abstraction of process models. Book. (2009)

229-244. Springer Berlin Heidelberg.

[12] Sadiq, W., & Orlowska, M. E. (2000). Analyzing process

models using graph reduction techniques. Information

systems. 25(2). (2000), 117-134.

[13] Van der Aalst, W.M.P. 2013. Business Process Management:

A Comprehensive Survey.ISRN Software Engineering.

(2013), Article ID 507984.

[14] Vanhatalo, J., Völzer, H., & Koehler, J. (2009). The refined

process structure tree. Data & Knowledge Engineering.

68(9) (2009) 793-818.

