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Abstract—People with transradial hand amputations can 
have control capabilities of prosthetic hands via surface 
electromyography (sEMG) but the control systems are 
limited and usually not natural. In the scientific literature, 
the application of pattern recognition techniques to classify 
hand movements in sEMG led to remarkable results but the 
evaluations are usually far from real life applications with 
all uncertainties and noise. Therefore, there is a need to 
improve the movement classification accuracy in real 
settings. 
Smoothing the signal with a low pass filter is a common 
pre– processing procedure to remove high–frequency noise. 
However, the filtering frequency modifies the signal 
strongly and can therefore affect the classification results. 
In this paper we analyze the dependence of the classification 
accuracy on the pre–processing low–pass filtering 
frequency in 3 hand amputated subjects performing 50 
different movements. The results highlight two main 
interesting aspects. First, the filtering frequency strongly 
affects the classification accuracy, and choosing the right 
frequency between 1Hz–5Hz can improve the accuracy up 
to 5%. Second, different subjects obtain the best 
classification performance at different frequencies. 
Theoretically these facts could affect all the similar 
classification procedures re- ducing the classification 
uncertainity. Therefore, they contribute to set the field 
closer to real life applications, which could deeply change 
the life of hand amputated subjects. 
 
Index Terms— surface electromyography, signal filtering, 
machine learning, rehabilitation engineering 
 

I. INTRODUCTION 

Hand prostheses controlled by surface 
electromyography (sEMG) have been used since the late 
1960s [1]. However, they still have several important 
limits. First, usually they offer only 2 or 3 degrees of 
freedom and the number of movements that the subjects 
can perform is therefore limited (usually opening and 
closing of the prosthesis). The number of movements can 

be increased using specific control sequences but in these 
cases the movements are far from being natural and easy 
to be reproduced. Second, the control systems are not 
“natural”, which means that the movement that the 
amputee is doing with the intact hand is different from 
the movement performed by the prosthesis. Third, the 
prostheses require long and complicated training 
procedures. These facts contribute to the limited use of 
sEMG prostheses [2]. 

In the scientific literature, several control schemes 
based on classifiers have been proposed to solve these 
control problems [3], [4], [5], [6]. However, these results 
are still far from the possibility of being applied in 
practice as any misclassification can have a negative 
effect. Therefore, there is a clear need to improve the 
movement classification accuracy. 

Smoothing the rectified signal with a low pass filter is 
a common pre–processing procedure to remove high– 
frequency noise components [7]. However, the filtering 
frequency strongly modifies the signal and can affect the 
classification results. 

In this paper we analyze the dependence of the 
classification accuracy on the pre–processing low–pass 
filtering frequency in 3 hand amputated subjects 
performing 50 different movements. Also, for each 
subject and for each frequency we find a selection of up 
to 15 independent movements that can be perfectly 
discriminated. The datasets come from the NinaPro 
(Non–Invasive Adaptive Hand Prosthetics) project [8], 
which has the aim to help the scientific progress in the 
field of sEMG movement recognition with a benchmark 
database to develop, test and compare machine learning 
algorithms. Currently, two databases with 27 and 40 
intact subjects using different electrodes and with slightly 
over 50 movements can be downloaded from the project 
website (http://ninaweb.hevs.ch/). The used sEMG setup 
is standard and the classification procedure is fast. The 
results highlight that choosing the right filtering 



frequency can improve the accuracy and that different 
subjects obtain the best classification performance at 
different frequencies. These facts should affect all similar 
classification procedures, reducing the classification 
uncertainity. Therefore they contribute to set the field 
closer to real life applications, which could deeply 
change the life of hand amputated subjects. 

II. METHODS 

A. Data Acquisition 
The datasets used in this paper were acquired from 

three subjects with a transradial amputation of the right 
forearm. The amputations are transradial medium and 
long below the elbow, with a remaining percentage of the 
forearm between 70% and 90%. The subjects are male, 
right handed and their clinical characteristics are 
described in Table I. 

TABLE I CLINICAL DATA OF HAND AMPUTATED SUBJECTS 

Subject Age	
   Missing	
  
Hand	
  

Years	
   from	
  
Amputation	
  

Remaining	
  
Forearm	
  
Percentage	
  

Number	
  
Movement
s	
  

1 35	
   Left	
   6	
   70	
   50	
  

2 44	
   Right	
   14	
   90	
   50	
  

3 55	
   Right	
   5	
   90	
   50	
  

 
The sEMG data were acquired according to the final 

version of the NinaPro acquisition protocol [8], [9], [10]. 
The protocol includes 6 repetitions of 50 movements 
(Figure 1), selected from the hand taxonomy and robotics 
literature, (e.g., [11], [12], [13], [14]). During the 
acquisition, the amputated subjects were asked to think to 
repeat the movements shown on the screen of a laptop 
according to a bilateral imitation procedure [3]. Each 
movement repetition lasted 5 seconds and was followed 
by 3 seconds of rest. 

The muscular activity was recorded at 2kHz using 12 
active double–differential wireless electrodes from a 
DelsysTrigno Wireless EMG system. The electrodes 
were positioned as shown in Figure 2: eight electrodes 
were equally spaced around the forearm in 
correspondence to the radio humeral joint; two electrodes 
were placed on the main activity spots of the flexor 
digitorum and of the extensor digitorum as described in 
[8]; two electrodes were placed on the main activity spots 
of the biceps and of the triceps. The described locations 
have been chosen in order to combine a dense sampling 
approach [15], [16], [17] with a precise anatomical 
positioning strategy [18], [19]. Moreover, such a setup 
permits the use of spatial registration algorithms [20] to 
improve the classification results. The electrodes were 
fixed on the forearm using their standard adhesive bands. 
A hypoallergenic elastic latex–free band was placed 
around the electrodes to keep them fixed during the 
acquisition. 

B. Data Analysis 
1) Preprocessing: First, all the data were synchronized 

by linearly interpolating them to the highest recording 

frequency (i.e., 2 kHz). Second, the sEMG was low-pass 
filtered using a zero-phase second order Butterworth 
filter at different frequencies in order to remove high–
frequency noise components and to analyze the effect of 
each frequency on the movement classification. The used 
frequencies are the following: 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 
4, 5, 10, 15, 25, 50, 100, 200 Hz. The second order 
Butterworth filter was used in accordance to common 
preprocessing in hand movements sEMG literature [3], 
[8]. Then, the signal from each repetition of each 
movement was segmented with a Generalized Likelihood 
Ratio approach [21], which realigns the movement labels 
to time windows that contain increased sEMG activity. 
Finally, the data of all the movement repetitions were 
normalized to the same time length and the signal was 
normalized to its maximum and divided by the standard 
deviation. 

2) Classification: The classification procedure is 
balanced and it is an evolution of the one described in 
[22]. For each filtering frequency, a Distance–based 
Decision Classifier (DDC) [23] based on the normalized 
Euclidean distance was applied to each repetition of all 
the movements with a leave one out approach (i.e. one 
sample for testing, five samples for training). The DDC 
was chosen because it is very fast (the classification of 
each movement repetition requires approximately 60 ms 
using Matlab with a non optimized procedure on a 
2.7GHz Macbook pro) and it gives good results in this 
kind of tasks (it outperforms k–NN algorithms in most 
experiments and the results are usually comparable to or 
better than SVMs [23]). Finally, for each filtering 
frequency, the same classification procedure was applied 
recursively to subsets of movements in order to find for 
each subject a subset of independent movements that 
does not present any misclassification. In this way the 
complexity of the task is reduced but it is possible to 
show that for fewer movements a very high classification 
accuracy is possible without training the subject. 

III. RESULTS 

The classification accuracy and the number of 
independent movements identified for the three 
amputated subjects for each considered frequency are 
shown respectively in Figure 3 and in Figure 4. It can be 
noticed how in all three subjects the classification 
accuracy increases up to its maximum between 0 and 
3Hz, and then it starts to slowly decrease. We obtained a 
similar (but less evident) result also for the set of 
independent movements. 

The best classification results for the subjects are 
summarized in Table II and in Figure 5. The results were 
obtained with a 3 Hz filtering frequency on subject 1, and 
with a 1 Hz filtering frequency on subjects 2 and 3. Two 
subjects obtained the highest classification accuracy, 
61.78%. The Gaussian fit of the movements’ maximal 
classification results leads to a mean of 51.62%, which is 
more than 25 times the chance level for 50 movements 
(2%), and is well fitted by a Gaussian 
distribution(p<0.05) Figure 5. The average number of 
independent movements is 9.33, with a maximum of 12  



	
  
Figure 1 The 50 movements acquired within the NinaPro acquisition protocol. 

 

 

 

	
  
	
  

Figure 2 Forearm of the transradial amputated subjects: (a) subject 1; (b) subject 2; (c) subject 3. 

	
  
	
   	
  



movements for subject 1. Different subsets of 
movements could also be selected on the basis of other 
parameters, such as the functional usefulness of the 
movements. 

 

 
Figure 3 Filtering frequency effect on the classification accuracy. 

 

 
Figure 4 Filtering frequency effect on the number of independent 

movements. 

TABLE II CLASSIFICATION RESULTS FOR HAND AMPUTATED 
SUBJECTS 

Subject Frequency	
  (Hz)	
  
Classification	
  
Accuracy	
  

Independent	
  
Movements	
  

1 3	
   61.78%	
   12	
  

2 1	
   61.78%	
   10	
  

3 1	
   46.74%	
   6	
  

	
  
In order to get a deeper perspective of the independent 

movement selection, in Figure 6 we present a 
statisticalevaluation of the identified independent 
movements in the three subjects. It can be noticed that 
only 5 movements are repeated in more than two 
different subjects, which means that the movements are 
usually different in different subjects. 

 
Figure 5 Distribution and Gaussian fit of all the movement 

classification results in hand amputated subjects. 

 
Figure 6 Generalization of independent movements. 

IV. CONCLUSION 

Currently, myoelectric prostheses permit hand 
amputated subjects to perform few simple movements.  

However, the control possibilities are still limited and 
not natural. In the scientific literature, the application of 
pattern recognition techniques to classify hand 
movements in sEMG led to remarkable results. However, 
the results are still not accurate enough to permit real life 
applications as small mistakes can have important 
consequencies. Therefore, there is a need to improve the 
movement classification accuracy. Smoothing the signal 
with a low pass filter is a common pre–processing 
procedure in sEMG to remove high–frequency noise 
components. However, the filtering frequency modifies 
the signal strongly and can therefore affect the 
classification results. 

In this paper we analyze the dependence of the 
classification accuracy on the pre–processing low–pass 
filtering frequency in 3 hand amputated subjects 
performing 50 movements. The subjects have 
respectively 70%, 90% and 90% of the forearm 
remaining. The datasets are from the NinaPro database, 
which was developed in order to overcome the limits of 
dexterous prosthetics through the evaluation of machine 
learning algorithms from the worldwide scientific 
community on a common database. 

The results highlight four main interesting aspects. 
First, the filtering frequency strongly affects the 
classification accuracy (Figure 3). In all subjects the 
classification accuracy increases up to its maximum 
between 0 and 3Hz, and then it starts to slowly decrease. 
Choosing the right frequency between 1Hz-5Hz can 
improve the accuracy by up to 5%. A similar (but less 
evident) result was obtained also for the set of 
independent movements. Second, although the trends of 
the classification performance are similar in all the 
subjects, different subjects obtain the best classification 
performances at different frequencies. The described 
results could theoretically affect most of the sEMG 
classification procedures that use low–pass filtering 
before classification. Therefore, the optimization for each 
subject of the pre–processing filtering frequency could 
lead to an overall improvement of the sEMG movement 
classification performance. Third, the ratio between the 
accuracy and the chance level (more than 25 times) is 
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very high in comparison to other results described in the 
literature for similar tasks, e.g. 5.7 [3] (6 movements, 
accuracy 95%), 8.5 [24] (10 movements, accuracy 
84.4%), 10.56 [16] (12 movements, accuracy 87.8%). 
Fourth, the results on the selection of in- dependent 
movements for the transradial amputated subjects (Table 
II, Figure 6) highlights the possibility for the amputated 
subjects to control a robotic prosthetic hand with up to 12 
different movements with 60 ms of computational 
response time (i.e., in a time that would be realistic for 
use in everyday life). It has to be noticed that different 
subsets of movements could also be selected on the basis 
of other parameters, such as the functional usefulness of 
the movements. In conclusion, the results are an 
important step towards the natural control of dexterous 
prosthetic hands and they contribute to set the field closer 
to real life applications, which could deeply change the 
life of hand amputated subjects. 
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