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three–dimensional signal f(x) is defined in the Fourier domain as:

¤�R(n1,n2,n3){f}(!) =

…
n1 + n2 + n3

n1!n2!n3!

(�j!1)n1(�j!2)n2(�j!3)n3

||!||n1+n2+n3
f̂(!), (1)

for all combinations of (n1, n2, n3) with n1 + n2 + n3 = N and n1,2,3 2 N.
Eq. (1) yields

�N+2
2

�
templates R(n1,n2,n3) and forms multiscale steerable fil-

terbanks when coupled with a multi–resolution framework based on isotropic
band–limited wavelets (e.g., Simoncelli) [11]. The Riesz transform allows for a
complete coverage of image scales and directions. The angular selectivity of the
filters can be tuned with the order N of the transform. The second–order Riesz
filterbank is depicted in Fig. 2.
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Fig. 2. 2nd–order Riesz kernels R(n1,n2,n3) convolved with isotropic Gaussians G(x).

2.4 Regional lung texture analysis

The prototype regional distributions of the texture properties of classic versus
atypical UIPs were learned using support vector machines (SVM). The anatomi-
cal atlas of the lungs described in Sec. 2.2 was used to locate the texture features
in 36 distinct subregions defined by the intersection of the 10 initial regions.

The energies E of the multiscale Riesz components R(n1,n2,n3)
j in each region

xi=1,...,36, constituted the feature space used to predict the class of UIP (see
Fig. 3). Second–order Riesz filterbanks were chosen as an optimal trade–o↵ be-
tween the ability of the filterbanks to cover image directions and feature dimen-
sionality [12]. Four dyadic scales were used to cover the various object sizes in
xi. The image scales and directions matched identical physical properties across
patients (see Sec. 2.1). Two additional feature groups were extracted for each
region to provide a baseline performance: 15 histogram bins of the gray levels
in the extended lung window [-1000;600] Hounsfield Units (HU), and 3–D gray–
level co–occurrence matrices (GLCM). The GLCMs parameters were optimized
using a distance d between voxel pairs of {�3; 3} and a number of gray levels
of {8, 16, 32}. Eleven GLCM properties were averaged over the 7 ⇥ 7 ⇥ 7 direc-
tions defined by all combinations of d values in x1, x2, x3 directions: contrast,
correlation, energy, homogeneity, entropy, inverse di↵erence moment, sum av-

erage, sum entropy, sum variance, di↵erence variance, di↵erence entropy [13].
The cost C of the errors of SVMs and the variance �K of the associated Gaus-

sian kernel K(vl,vm) = exp(�||vl�vm||2
2�2

K
) were optimized as: C 2 [100; 107] and

�K 2 [10�8; 102]. A leave–one–patient–out cross–validation was used to estimate
the generalization performance of the proposed approach.
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Idiopathic pulmonary fibrosis (IPF) 
•  Most common type of interstitial lung disease (ILD) 

•  Confounding diagnoses of ILDs: >150! 
–  Sarcoidosis, non-specific interstitial pneumonia, … 

•  Multidisciplinary approach between experts in  
pulmonology, pathology and chest radiology [1] 

•  Often requires a surgical biopsy 
–  Costly, invasive and risky: 

•  Hemorrhage, lung collapse 
•  Acute exacerbation of the lungs [2] 

[1] Raghu et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and 
management. American Journal of Respiratory and Critical Care Medicine, 183(6):788–824, 2011. 
[2] Lynch et al., Usual interstitial pneumonia: Typical and atypical high–resolution computed tomography features, Seminars in  
ultra-sound, CT, and MR, 35(1):12–23, 2014. 
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Radiology: usual interstitial pneumonia (UIP) 
•  Lung biopsy can be obviated when the clinical and 

radiographic (CT) impression are clearly suggestive of UIP [1] 

[1] Raghu et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and 
management. American Journal of Respiratory and Critical Care Medicine, 183(6):788–824, 2011. 
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UIP, however, are found in a substantial proportion of cases ranging from 30%
to 50% [2]. In this context, candidate selection for lung biopsy requires a multi-
disciplinary consensus of clinicians and radiologists with extensive experience in
intersitial lung diseases.

The classic computed tomography (CT) appearances of UIP is characterized
with basal– and peripheral–predominant reticular abnormality and honeycomb-
ing [2] (see Table 1). The fibrotic pattern of UIP is often asymmetric but rarely
unilateral. Importantly, a confident CT diagnosis also requires the absence of
atypical UIP findings. For example, disease that is predominant in the lung
apices is atypical for UIP and would suggest other diagnoses such as sarcoidosis,
hypersensitive pneumonia, pneumoconiosis or familial pulmonary fibrosis. Pat-
terns of fibrosis with anterior predominance are related to respiratory distress
syndrome. Therefore, the accurate identification of classic UIP requires a de-
tailed description of the parenchymal alterations and their anatomical locations,
which can only be established by experienced thoracic radiologists. The charac-
terization of lung tissue types such as honeycombing, reticulation and ground
glass requires the subtle appreciation of three–dimensional tissue texture proper-
ties (see Fig. 1), for visual inspection has provided little reproducibility [4]. The
importance of relating these patterns to their anatomical location adds another
level of complexity and is subject to high inter-observer variation.

Table 1. Radiological criteria for UIP [1].

Classic UIP (all required) Inconsistent with UIP (any)

• Peripheral, basal predominance • Upper or mid–lung predominance

• Reticular abnormality • Peribronchovascular predominance

• Honeycombing with or without
traction bronchiectasis

• Extensive ground glass abnormality
(extent > reticular abnormality)

• Absence of features listed as
inconsistent with UIP pattern

• Profuse micronodules (bilateral, predominantly
upper lobes)

• Discrete cysts (multiple, bilateral, away from
areas of honeycombing)

• Di↵use mosaic attenuation/air–trapping
(bilateral, in three or more lobes)

• Consolidation in bronchopulmonary segment(s)/lobe(s)

normal ground glass reticular honeycombing

Fig. 1. Common parenchymal appearances of UIP in MDCT.

The computerized recognition of lung tissue types in chest CT has been an
active research domain to provide assistance in image interpretation and enhance
diagnosis sensitivity and specificity [5]. Whereas most of the studies are based on
slice–based 2–D texture analysis, few of them are fully leveraging the wealth of
modern multiple detector CT (MDCT) protocols using 3–D solid texture anal-

window, can be seen in aminority of otherwise typical cases of
UIP23 (Fig. 3) and should be distinguished from the non-
fibrotic linear and nodular pattern of calcification seen in
dendriform pulmonary ossification.24 The fibrotic pattern of
UIP is quite often asymmetric but never unilateral (Fig. 6).
One of themore challenging features of diagnosingUIPwith

HRCT is determining the presence of honeycombing. A study
by Watadani et al25 showed that substantial interobserver
variability exists for identifying honeycombing on HRCT, with
kappa values ranging from 0.40-0.58. However, it is not clear
whether this study, which scored only single images, and
selectively included atypical cases of honeycombing, is appli-
cable to more general assessment of honeycombing. The
definition of honeycombing used by the Fleischner Society
(clustered cystic airspaces that are usually subpleural withwell-
defined walls and often with comparable diameters of
3-10 mm but occasionally as large as 2.5 cm)26 should be
carefully applied. Honeycombing must be distinguished from
paraseptal emphysema (which is usually associated with larger
cysts and usually more prominent in the upper lungs and

Figure 2 UIP pattern in a 75-year-old man. (A and B) Axial and coronal CT images show peripheral-predominant, basal-
predominant reticular abnormalitywith honeycombing, typical forUIP. The honeycombing ismore evident on the coronal
reconstructions. (C and D) Axial and coronal images obtained 3 years later show substantial progression of reticular
abnormality and honeycombing.

Figure 3 UIP pattern with ossification. Axial CT image shows typical
findings of UIP with peripheral-predominant reticular abnormality
and honeycombing. Numerous punctate calcifications are present
within the fibrosis.

D.A. Lynch and J.M. Huckleberry14
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The computerized recognition of lung tissue types in chest CT has been an
active research domain to provide assistance in image interpretation and enhance
diagnosis sensitivity and specificity [5]. Whereas most of the studies are based on
slice–based 2–D texture analysis, few of them are fully leveraging the wealth of
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A) tissue type B) tissue location 
peripheral 

basal 
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Objectives and experimental setup 
•  Computer-aided diagnosis for identifying classic UIPs:  

–  No biopsy required for them! 

•  Derive a score from regional volumetric texture analysis 
–  3-D texture analysis 
–  Basic anatomical atlas 

•  33 patients with biopsy proven IPF 

•  Volumetric multiple detector CT (MDCT) 
–  Acquired within the year of the biopsy 

•  Gold standard: consensus of two thoracic radiologists with 
more than 15 years of experience with ILDs 
–  15 patients with classic UIP versus 18 patients with atypical UIP 
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Simple 3-D digital atlas of the lungs 
•  The lungs are split perpendicularly to 4 axes [3] 

5 [3] Depeursinge et al., 3D lung image retrieval using localized features. In SPIE Medical Imaging 2011, vol. 7963, page 79632E, 2011.  
 
 

(a) (b) (c)

Figure 1. (a): definition of the peripheral region. (b) and (c): the 36 sub–regions resulting from the intersections of the
10 initial regions are used as the 3D localization system.

⊥ axial The division of Mlung into peripheral, middle and central regions is performed as follows:

1. the projection of c0 is reported in each axial slice as c0,axial(x0, y0, z),

2. peripheral region is defined as all points of Mlung that are between a lung boundary and c0,axial, and that
are less distant from the lung boundary than a distance dp (see Figure 1 (a)). dp is arbitrarily chosen as
the width of one single lung divided by 5.5 at a c0 level to have aproximately same widths for the three
axial sub–regions,

(a) a 3D closing operation is applied using a spherical structural element with a radius of 5mm.

3. step 2 is repeated to the remaining voxels of Mlung to obtain the middle region,

4. the remaining voxels of Mlung are constituting the central region.

2.5. Global and local inter–case distances

Both inter–case distance measures are based on the percentages of each of the five lung tissue types. The global
distance dglobal is defined as the l2–Euclidean distance in the space of the differences δ of percentages of the
tissue types:

dglobal =
√

δ2h + δ2e + δ2g + δ2f + δ2m, (1)

where h stands for healthy, e for emphysema, g for ground glass, f for fibrosis and m for micronodules.

The inter–case distance is obtained by pairwise comparison of tissue distributions for the 36 sub–regions r:

dlocal =
36
∑

r=1

wr

√

δ2hr
+ δ2er + δ2gr + δ2fr + δ2mr

, (2)

where wr are weights of each sub–region.

2.5.1. Optimization of the regional weights for the local inter–case distance

Obviously, not all anatomical locations are relevant for the characterization of the histological diagnoses. In order
to promote the most important regions, the weights wr in (2) are optimized using an exhaustive grid search in
[0 : 50] per axis. Due to computational constraints, a global grid search requiring to run the whole experiment
3650 times is not conceivable. Thus, the optimization is carried out per axis, where the regions are compared
between each other per axis. For instance, in the vertical axis the retrieval performance is evaluated for each
combination of three weights:

dlocal = wapicaldapical + wcentraldcentral + wbasaldbasal. (3)

After obtaining optimal weights for each of the ten regions, the weight assigned to each of the 36 sub–regions
is computed as the sum of normalized weights of each region from which it belongs. For instance, the region
apical peripheral anterior left obtains the weight w = w̃apicalbest + w̃peripheralbest + w̃anteriorbest + w̃leftbest , where
(˜) denotes the per–axis normalization.

Table 2. Localization of the lung masks. The lungs are split perpendicularly to 4 axes [ 24]. 
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for all combinations of (n1, n2, n3) with n1 + n2 + n3 = N and n1,2,3 2 N.
Eq. (1) yields

�N+2
2

�
templates R(n1,n2,n3) and forms multiscale steerable fil-

terbanks when coupled with a multi–resolution framework based on isotropic
band–limited wavelets (e.g., Simoncelli) [11]. The Riesz transform allows for a
complete coverage of image scales and directions. The angular selectivity of the
filters can be tuned with the order N of the transform. The second–order Riesz
filterbank is depicted in Fig. 2.
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Fig. 2. 2nd–order Riesz kernels R(n1,n2,n3) convolved with isotropic Gaussians G(x).

2.4 Regional lung texture analysis

The prototype regional distributions of the texture properties of classic versus
atypical UIPs were learned using support vector machines (SVM). The anatomi-
cal atlas of the lungs described in Sec. 2.2 was used to locate the texture features
in 36 distinct subregions defined by the intersection of the 10 initial regions.

The energies E of the multiscale Riesz components R(n1,n2,n3)
j in each region

xi=1,...,36, constituted the feature space used to predict the class of UIP (see
Fig. 3). Second–order Riesz filterbanks were chosen as an optimal trade–o↵ be-
tween the ability of the filterbanks to cover image directions and feature dimen-
sionality [12]. Four dyadic scales were used to cover the various object sizes in
xi. The image scales and directions matched identical physical properties across
patients (see Sec. 2.1). Two additional feature groups were extracted for each
region to provide a baseline performance: 15 histogram bins of the gray levels
in the extended lung window [-1000;600] Hounsfield Units (HU), and 3–D gray–
level co–occurrence matrices (GLCM). The GLCMs parameters were optimized
using a distance d between voxel pairs of {�3; 3} and a number of gray levels
of {8, 16, 32}. Eleven GLCM properties were averaged over the 7 ⇥ 7 ⇥ 7 direc-
tions defined by all combinations of d values in x1, x2, x3 directions: contrast,
correlation, energy, homogeneity, entropy, inverse di↵erence moment, sum av-

erage, sum entropy, sum variance, di↵erence variance, di↵erence entropy [13].
The cost C of the errors of SVMs and the variance �K of the associated Gaus-

sian kernel K(vl,vm) = exp(�||vl�vm||2
2�2

K
) were optimized as: C 2 [100; 107] and

�K 2 [10�8; 102]. A leave–one–patient–out cross–validation was used to estimate
the generalization performance of the proposed approach.
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Regional features and score 
•  Texture: 3-D Riesz filters [4] 

–  quantify the local amount of directional image  
patterns at multiple scales:  

•  Intensity hist. in                      Hounsfield Units  
–  15 hist. bins 

•  Feature aggregation and score          :  

6 [4] Chenouard et al., 3D Steerable Wavelets and Monogenic Analysis for Bioimaging, IEEE Int Symp on Biomed Imag. (ISBI) 2011;2132-5.  
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level co–occurrence matrices (GLCM). The GLCMs parameters were optimized
using a distance d between voxel pairs of {�3; 3} and a number of gray levels
of {8, 16, 32}. Eleven GLCM properties were averaged over the 7 ⇥ 7 ⇥ 7 direc-
tions defined by all combinations of d values in x1, x2, x3 directions: contrast,
correlation, energy, homogeneity, entropy, inverse di↵erence moment, sum av-

erage, sum entropy, sum variance, di↵erence variance, di↵erence entropy [13].
The cost C of the errors of SVMs and the variance �K of the associated Gaus-

sian kernel K(vl,vm) = exp(�||vl�vm||2
2�2

K
) were optimized as: C 2 [100; 107] and

�K 2 [10�8; 102]. A leave–one–patient–out cross–validation was used to estimate
the generalization performance of the proposed approach.

… 

: classic UIP 

: atypical UIP 



Results and discussion 
•  ROC analysis of the score and comparison with two fellows 

 

–  Importance of regional volumetric texture analysis 
–  the performance is comparable to cardiothoracic fellows with 1 year  

of specialization (computer score: 6 errors, fellows: 7 errors each) 

•  Demonstrate the potential benefits of our approach in centers 
without access to ILD experts to avoid unnecesary biopsies 
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HU, AUC=0.541
Riesz, AUC=0.811
Riesz + HU, AUC=0.774
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ROC: global versus regional analysis, fellows

 

 

global (Riesz), AUC=0.722
regional (Riesz), AUC=0.811
regional (Riesz), operating point
fellow 1, operating point
fellow 2, operating point

4 out of 5 patients were 
correctly classified 


