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ABSTRACT
We consider queuing systems with coupled processors, where the
service rate at each queue depends on the set of active queues in the
system. In general, the queue lengths of such systems, that we call
Coupled Processor Systems (CPSs), are modeled through complex
Markov Chains whose steady state distributions are known only
for two-queue systems. For larger systems, the performance mod-
eling has either been based on very large sets of simulations, or
on neglecting altogether the effect of the couplings on system dy-
namics.We propose a new approach, based on a worst case analysis
of system dynamics, and which does not require simulations for
its parametrization. We derive new sufficient conditions for stabil-
ity of a CPS, and bounds on backlog and packet delay. We assess
numerically our results, showing that considering those dynamics
of the system induced by coupling substantially improves resource
allocation in a CPS.

1. INTRODUCTION
We consider a system of parallel queues, for which the service rate
that the incoming traffic receives depends on the set of nonempty
queues in the system. Such model, known in the literature as "Cou-
pled Processors System" (CPS)[14], arises in several contexts, in
which coupling typically derives from the sharing of common re-
sources. In wireless communications, CPS hes been proposed to
model the effects on performance of the complex interdependence
among nodes due to the shared medium, as well as of interference
[3]. Indeed the increase in capacity demand in wireless access is
bringing up base stations and access points densities, increasing
the impact of interference on performance. In LTE, the use of a low
reuse factor has been proposed in order to increase the capacity to
the user [13]. This makes it essential to take into account in network
planning the impact of the resulting interdependency among base
stations service times. Other applications of the coupled processors
model are in the analysis of performance of clusters of servers, of
computing services based on a virtualization of the underlying in-
frastructure, of network of processors, and in any system of servers
in which the sharing of a common resource induces a correlation
between the performance of the servers [4, 5, 3]. In such systems
overprovisioning is often the main approach adopted to minimize

the effect of coupling.
In the present work, we focus on CPSs where the service rate of
each queue is a decreasing function of the number of active queues
in the system. This class of CPSs applies to many problems of prac-
tical importance (including all of the above mentioned examples)
and it has been widely studied in the past, in the context of wireless
networks and of bandwidth sharing in packet networks. A trivial
way of analyzing such systems is to assume a static, worst-case sce-
nario, where service rates are those of a system in saturation, with
all queues active. This leads to heavily pessimistic results, often
of little practical interest. Research efforts have focused therefore
on the (very difficult) problem of capturing the effects of system
dynamics on performance. [8, 11] derived closed-form necessary
and sufficient conditions for the stability of a CPS composed by
two nodes with one class of traffic each. Both works assume Pois-
son arrivals and exponential service times. [4] derives a similar
result, assuming heavy tailed distribution for file sizes. [5] pro-
vides a method to know if a particular configuration of the CPS is
stable, based on the steady state probabilities of related Markov
chains, and under Poissonian traffic assumption. The drawback
of this method is that it is based on a number of simulations for
the derivation of the steady state probabilities which grows factori-
ally with the size of the problem.[12] applies this method to a sce-
nario with three nodes and a single class of traffic for each of them.
The approach in [14] is based on the stochastic characterization of
bounds on the moment generating function for the queue lengths at
the nodes of the CPS. [2] proposes approximation methods for the
derivation of sufficient conditions for stability, which assume that
all nodes but one are saturated.
As the complexity of all available results is a factorial or exponen-
tial function of the number of nodes, the derivation of nontrivial
and computationally feasible performance bounds for CPS is still
an open problem. Indeed, many of the available results involve
computationally heavy simulations or they are based on conserva-
tive assumptions on the system. In the present paper, we propose a
fully analytical approach for performance analysis of a generic N -
nodes CPS, showing how to derive the main performance bounds of
the system. For a given CPS, our method is based on the derivation
of a set of networks whose performance bounds hold also for the
CPS, and which can be analyzed using standard Network Calculus
results. Summarizing, in this paper:

• We present an analytical method for computing sufficient sta-
bility conditions for a genericN nodes CPS when arrivals are
leaky bucket constrained;

• We show how to derive hard bounds on backlog at each node
and, when nodes are FIFO, on maximum packet delay;

• We assess numerically our results by applying them on a spe-



cific problem in wireless communications. Furthermore, we
show that considering the dynamics of the incoming traffic at
a CPS helps improving substantially the resource allocation
of the system.

The paper is organized as follows. In Section 2 we present the
system model used in this paper, and some important Network
Calculus concepts. Section 3 presents our method for the deriva-
tion of performance bounds in coupled processors systems, and in
Section 5 we show on a wireless scenario how to derive practical
results, assessing their performance on some numerical examples.
We conclude our paper and discuss future directions of research in
Section 6.

2. MODEL AND ASSUMPTIONS
2.1 System Model
We consider a system of N parallel queues, where each queue re-
ceives traffic from one or more fresh sources (i.e. residing out of the
system). We assume such queues are served by work conserving
schedulers. We define as the state of the system at time t the array
I(t) = (I1(t), I2(t), ..., IN (t)) where ∀i, Ii(t) is 0 if the queue at
the i−th node is empty at time t, and 1 otherwise. ∀i we assume
that the instantaneous service rate at queue i, Ri(t), is determined
only by the state of the system at time t, i.e. Ri(t) = Ri(I(t)). We
call such a system a Coupled Processor System (CPS).
In the present treatment we consider only monotonic CPSs. i.e
such that if I1 and I2 are two different states of the system such
that I1 ≤ I2, then ∀i, Ri(I1) ≥ Ri(I2). In Section 4 we outline
how to extend our results to non-monotonic CPSs.
Without loss of generality, we assume arrivals to be packetized,
with a finite number of packet sizes. We consider that no losses are
present at queues (buffers of infinite capacity).
We assume the traffic from fresh sources to be constrained by a
leaky bucket arrival curve [6]. This implies that if A(t) is the cu-
mulative arrival function for a given traffic source for the time in-
terval [0, t], than for any [t1, t2], A(t2)−A(t1) ≤ ρ(t2 − t1) + σ.
ρ, σ are the leaky bucket rate and the burstiness, respectively, for
the considered source. Such assumption on traffic covers a large
spectrum of practical settings, as it allows us not to make any as-
sumption on traffic statistics. Indeed, in real settings any source is
constrained by some form of leaky bucket arrival curve, (e.g. due to
limitations of the application generating the traffic, to the bit rate of
the connection, and so on), possibly by means of some conservative
assumptions on the statistics of the traffic.

2.2 Network Calculus Basics
In this section we introduce some Network Calculus concepts and
results we have used in this paper. Network Calculus is a min-plus
system theory for deterministic performance analysis of a queuing
system [6]. It provides tools for the derivation of bounds to backlog
and packet delay in a network. We first present the continuous
data scaling block, originally introduced in [10]. We use a slightly
different version of it:

DEFINITION 2.1 (CONTINUOUS DATA SCALING BLOCK). For
any time t1, t2 ≥ 0, with t2 ≥ t1, assume a ≥ 0 is the amount of
bits arrived at a node in the time interval [t1, t2]. The node is a
Continuous Data Scaling Block, with scaling value S ∈ R+ if the
amount of bits at its output during the same time interval is S · a.

The data scaling block makes it possible to model transformation
processes which alter not only the timings of data arrivals, but
also the total amount of data arriving, like data processing, encod-
ing/decoding, and so on. Another concept we use is the one of the
policer:

DEFINITION 2.2 (POLICER). A policer with policing function
γ(t) ∈ F is a processing device such that, for any arbitrary input
traffic, forces γ(t) as arrival curve for the output traffic.

Note that the definition does not specify what happens to the part
of the input traffic exceeding γ(t). In what follows we consider
unbuffered policers, which discard non-conformant traffic.
Finally, we adopt the following definition of stability:

DEFINITION 2.3 (STABILITY). Let us consider a system of
N queues, and for every queue i ∈ [1, ..., N ] and any time t ≥ 0
let qi(t) be the backlog at queue i at time t. The system is stable
if ∀i ∈ [1, ..., N ] it exists a finite Γi > 0 such that for any arrival
pattern from traffic sources, supt≥0qi(t) ≤ Γi

In general, sufficient conditions for stability imply constraints on
the fresh traffic arrivals (e.g. on leaky bucket parameters) and on
the network (service rates). If the condition on the backlog is satis-
fied only for some queues, we say the system is partially stable.

3. A NETWORK CALCULUS APPROACH
TO CPS ANALYSIS

A primary issue in coupled processors systems is to determine what
are the sufficient conditions for the system to be stable, in order to
be able to derive bounds on packet delay and on backlog. In this
section we illustrate a method for the derivation of these bounds,
based on a worst-case analysis. Our method is based on construct-
ing, from a given CPS, a set of feed forward networks. Each of
these networks is such that their partial stability over a specific sub-
set of their nodes implies the stability of the original CPS (we say
that such networks upper bound the CPS). As we show, the struc-
ture of these networks is such that it can be easily analyzed by
means of standard Network Calculus techniques, for the derivation
of the main performance bounds.
We begin with the following result, which defines a sufficient con-
dition for a class of networks to upper bound a CPS:

THEOREM 3.1 (UPPER BOUNDING NETWORK). Consider a
network withN ′ ≥ N queues, such that there is a one-to-one map-
ping between the queues of the CPS and a subset of N queues of
the network. The mapping is such that each queue j in the subset
has the same arrivals at any time t as its corresponding queue nj
in the CPS. Let Rnj (t) and Rj(t) be the service rates at time t, re-
spectively, at queue nj and queue j. If at any time t ≥ 0, for each
node j of the network, it holds Rj(t) ≤ Rnj (t), then the network
upper bounds the CPS.

PROOF. We prove that at any time t ≥ 0, the length qnj (t) of
each queue nj of the CPS is always smaller than the queue length
qj(t) of the corresponding node in the network. If this is the case,
a bound on the backlog of j also holds for the corresponding node
of the CPS, so that the partial stability of the network implies the
stability of the CPS. We prove qnj (t) ≤ qj(t) by contradiction.
Assume that t∗ is the smallest time for which qnj (t∗) > qj(t

∗)
holds. As arrivals are the same in both queues, this implies that at
time t∗ a bit b of traffic has left queue j in the network, while is still
being served at the corresponding queue nj of the CPS. Assume the
last bit served before b at node j has been served at t∗ − εj in the
network, and the last bit has been served at node nj at time t∗−εnj .
From the definition of t∗, t∗− εj ≥ t∗− εnj . This it means it exist
an instant t′ ∈ [t∗ − εnj , t

∗), where Rnj (t′) ≤ Rj(t
′), which

contradicts the assumptions.

We now describe the structure of a network satisfying the condi-
tions in Theorem 3.1, for the given CPS. The network has a feed
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Figure 1: Structure of the j-th stage of the feed forward net-
work.

forward topology with N stages. At each stage there is a work-
conserving GPS node, with two queues and working at the fluid
limit.
Let us label each queue of the CPS from 1 to N . We also label the
GPS nodes of the network, in a way that j ∈ 1, ..., N is the label
of the j-th stage of the network, as well as of the GPS node in it.
If n = (n1, ..., nN ) is one of the N ! possible permutations of the
labels of the CPS, n identifies a specific mapping which associates
the j-th GPS node to the nj-th node of the CPS.

Let us analyze the structure of the j-th stage of the feed forward
network. As shown in Fig. 1, each traffic flowOk, k = 1, ..., j−1
coming from one of the j − 1 previous stages is fed to a dedicated
scaling block, with scaling coefficent Sj,k.
The aggregate output of all the j − 1 scaling blocks is fed to a po-
licer, with policing function γ(t) = (Rupnj

− Rsatnj
)t, where Rupnj

is the service rate of node nj of the CPS when the active queues
at the CPS are nj , nj+1, ..., nN , and Rsatnj

when all queues of the
CPS are active.
The output of the policer is fed to a queue of the GPS, while the
other queue is dedicated to traffic from fresh sources. At any time
t, we assume arrivals from fresh sources at stage j are the same as
at the corresponding node nj at the CPS. The total service rate of
the GPS node is Rupnj

, and the GPS weights are w = Rsatnj
/Rupnj

for fresh traffic, and 1− w for traffic from the policer. As a conse-
quence, it can be easily verified that traffic from the policer is never
buffered at the GPS, so that stability of the network depends only
on the queues dedicated to fresh traffic.
At the output of the GPS node, traffic coming from previous stages
exits the network. The remaining traffic is fed to a node which pro-
ducesN−j exact replicas of the same traffic, introducing no delay.
Finally, each replica is fed to one of the following stages.
We indicate with S the upper triangular matrix of the scaling coeffi-
cients for the whole network. For the given CPS, every couple (n,S)
identifies a specific network with the structure we have illustrated.
Similarly to what happens in a CPS, within each of these networks
the queues for fresh traffic are coupled. Indeed, at any GPS node
the instantaneous service rate for fresh traffic at a given time gener-
ally depends on a subset of the GPS nodes which are serving fresh
traffic at that time. We indicate with Oj(Y(t)) such a service rate
at node j and time t, where the array Y is the state vector of the
network, of length N , indicating the fresh traffic queues which are
active at time t.
From the feed forward structure of the network, one can see that at
any stage the service rate Oj(Y(t)) at time t can be derived recur-
sively from previous stages as:

Oj(Y(t)) = Rupnj
− Fj(Y(t), S), (1)

where Fj(Y(t), S) is the output of the policer at stage j for the state
vector Y(t):

Fj(Y(t), S) = min

(
j−1∑
p=1

Op(Y(t))Sj,p, R
up
nj
−Rsatnj

)
. (2)

Fj(Y(t), S), which we call rate impairment, models the effect which
fresh traffic at nodes at stages 1, ..., j − 1 have on the fresh traffic
service rate at node j. Here we have used the fact that as fresh traf-
fic is packetized, the instantaneous service rate for fresh traffic is
also the instantaneous departure rate of this traffic from node j.
We now show how, by appropriately modulating rate impairments
at each GPS node (via a proper choice of the scaling coefficients),
it is possible to obtain a network which satisfies the hypothesis of
Theorem 3.1, and which therefore upper bounds the CPS. The fol-
lowing theorem defines sufficient conditions on rate impairments
for a network to upper bound the given CPS.

THEOREM 3.2. It is given a CPS, and a (n,S) network struc-
tured as described, and let Y(t) be the state vector of the network
at time t. Then the network upper bounds the CPS if, ∀t ≥ 0, and
for any node j the rate impairment Fj(Y(t), S) satisfies:

Fj(Y(t), S) ≥ Rupnj
−Rupnj

(Y(t)) (3)

where Rupnj
(Y(t)) is the service rate at node nj of the CPS when

the nodes of the CPS which are active are all those associated to
active nodes in the network, plus nodes nj+1, ..., nN .

For the proof see Section 8.1. In the network we model these cou-
pling effects with the presence of additional traffic into the queue
affected, coming from other nodes in the network. More specifi-
cally, every time a node affects the service of another one in the
given CPS, in the network there is some traffic going out from the
node corresponding to the affecting node in the CPS, and entering
the node which corresponds to the affected node in the CPS. As
such network works at the fluid limit (i.e. traffic is served as if it
was infinitely divisible), and as this additional traffic is present only
when the affecting queue is active, we show that the performance
of the affected queue at any time t depends on the occupancy state
of the affecting queue at the same time instant, similarly to the orig-
inal CPS.
One of the issues raised by Theorem 3.2 is whether it is always pos-
sible to build, for a given CPS, an upper bounding network. From
the structure of the feed forward network, one can easily see that
for every mapping n there are at least two choices for the scaling
coefficients which brings them to always satisfy Theorem 3.2. The
first choice consists in setting all scaling values to infinity, and it
brings to heavily overestimate the effects of coupling on service
rates. The second one is illustrated in Section 5.1, and, as we will
show numerically, corresponds to a set of upepr bounding networks
which more tightly follow rate variations of their associated CPS.
As for each CPS there are N ! possible mappings, for each CPS
there are at least 2N ! upper bounding networks.

3.1 Sufficient conditions for stability of a CPS
In what follows, we consider the case in which, at each node of
the CPS, the aggregate of the fresh traffic is constrained by a leaky
bucket arrival curve [6]. It can easily be proven that similar results
can be derived for other kind of arrival curves. The following theo-
rem defines a set of sufficient conditions on the leaky bucket rates
for the stability of the CPS, exploiting the properties of the upper
bounding networks described in the previous section.



THEOREM 3.3. Let us consider a CPS, where at each node j =
1, ..., N fresh arrivals are constrained by leaky bucket arrival curves,
with parameters (ρj , σj). If it exists at least one network (n, S) sat-
isfying Theorem 3.2 for the given CPS, and such that at each stage
j = 1, ..., N , ρj satisfies

ρj ≤ max

(
Rsatnj

, Rupnj
−
j−1∑
p=1

Sj,pρnp

)
(4)

then the CPS is stable.

For the proof see Section 8.2. These sufficient conditions are com-
puted from analyzing the upper bounding network by stages, and
they derive from the imposing node stability at each GPS. As we
can see from the expressions of these conditions, a trivial sufficient
condition for stability is ρj ≤ Rsatnj

, ∀j, which corresponds to as-
suming each node always serves fresh traffic at the worst possible
service rate due to coupling. The additional terms in the condition
represent the improvement over such trivial conditions obtained by
modeling the traffic at those nodes which affect the service rate of
the considered node.

3.2 Bounds on Backlog and Virtual Delay
Once that for a CPS, we have built an upper bounding network
(n, S) which is stable according to Theorem 3.3, then it is possi-
ble, by applying standard Network Calculus results on that same
network, to derive upper bounds to packet delay and to backlog
at each node of the network. Then, as the network satisfies also
the sufficient conditions in Theorem 3.1, it can be easily shown
that bounds for delay and backlog for each GPS queue dedicated
to fresh traffic in such a network hold also for the corresponding
queues in the CPS.

THEOREM 3.4. Let us consider a CPS and an (n, S) upper bound-
ing network which verifies the hypothesis of Theorem 3.3. Then a
bound for backlog at each node nj of the CPS, j = 1, ..., N is
given by:

σ∗nj
=


σnj , if ρnj ≤ Rsatnj

,

σnj +
(ρnj

−Rsat
nj

)·(
∑j−1

k=1
Sj,k·σ∗nk

)

R
up
nj
−Rsat

nj
−
∑j−1

k=1
Sj,k·ρnk

otherwise.
(5)

Moreover, if the nodes of the CPS are FIFO, a bound to packet
delay at the same node is:

dnj =


σnj

Rsat
nj

, if ρnj ≤ Rsatnj
and σnj ≤ bnj ,

Tnj +
σnj

R
up
nj
−
∑j−1

k=1
Sj,k·ρnk

, if σnj > bnj ,
bnj

Rsat
nj

−
bnj
−σnj

ρnj
, if ρnj > Rsatnj

and σnj ≤ bnj .

(6)

with:

bnj =


∞, if Rsatnj

≥ Rupnj
−
∑j−1
k=1 Sj,kρnk ,

Rsat
nj

∑j−1
k=1

Sj,kσ
∗
nk

R
up
nj
−Rsat

nj
−
∑j−1

k=1
Sj,kρnk

otherwise.

Tnj =

∑j−1
k=1 Sj,k · σ

∗
nk

Rupnj −
∑j−1
k=1 Sj,k · ρnj

.

For the proof see Section 8.3. When several upper bounding net-
works are available for which the CPS is stable according to Theo-

rem 3.3, then our results enable the optimization of a given function
of these bounds, over the set of stable upper bounding networks.

3.3 Comparison with stochastic approach in
[5]

In this section we investigate the relationship between our method
and the one described in [5]. More specifically, we compare our
sufficient conditions for stability with the necessary and sufficient
conditions in [5], when independent Poisson arrival process with
{λ1, λ2} as parameter and exponentially distributed length for the
arrivals with parameter {µ1, µ2} are assumed for the system. As
the two methods rely on different assumptions for the input traffic,
and different notions of stability, no rigorous comparison is possi-
ble. In this section we try to get an intuition of how they relate to
each other, by using a stochastic network calculus formulation.
The scenario we consider is a two nodes CPS. For larger number
of nodes, a comparison would not be feasible as the method in [5]
would require a very high number of simulations. Recalling the
notation already used, Ri, with i ∈ [1, 2], is the service rate node i
of the CPS reserves to its own queue if the other node of the CPS is
not active while Rsati is the service rate node i reserves to its own
queue when both the node of the CPS are active. Applying the re-
sults of [5], necessary and sufficient conditions for stability of this
system are: {

λ1
µ1
≤ Rsat1

λ2
µ2
≤ R2 − λ1

µ1
· R2−Rsat

2

Rsat
1{

λ2
µ2
≤ Rsat2

λ1
µ1
≤ R1 − λ2

µ2
· R2−Rsat

1

Rsat
2

(7)

In order to have an idea of how this result compares with ours, we
use the Stochastic Network Calculus characterization of the Pois-
son inputs from [7]. If A(t) is the cumulative arrival function,
then a stochastic arrival curve can be defined for the inputs, with
long term rate ρ′i = λi

µi−δ
, violation probability p, and burstiness

σ′i = ln(p)
−δ , such that for any time interval [s, t], with s, t ≥ 0, it

holds:

Pr

(
A(t)−A(s) >

λ

µ− δ · (t− s) +
ln(p)

−δ

)
≤ p.

with δ < µi. Now let us consider the same two nodes CPS, whose
input are constrained by deterministic leaky bucket, with parame-
ters (σ′i, ρ

′
i), and let us consider the two upper bounding networks

we can build with our method. By applying Theorem 3.3, our suf-
ficient conditions for stability are:{

λ1
µ1−δ

≤ Rsat1

λ2
µ2−δ

≤ R2 − λ1
µ1−δ

· R2−Rsat
2

Rsat
1{

λ2
µ2−δ

≤ Rsat2

λ1
µ1−δ

≤ R1 − λ2
µ2−δ

· R2−Rsat
1

Rsat
2

.
(8)

By comparing (8) with (7) we can see that as the parameters δ and
p of the stochastic arrival curve tend to zero, the system with deter-
ministic leaky bucket inputs approximates better and better the one
with Poisson arrivals, and our sufficient stability conditions tend
towards those obtained with [5].

4. NON-MONOTONIC CPS



So far, we have considered the CPS to be monotonic. This assump-
tion applies to a large set of practical problems modeled via coupled
processors. In this section we outline how to extend our results to
the general case in which the CPS is not necessarily monotonic.
Theorem 3.1 does not rely on the monotonicity of the CPS, and
indeed the whole proof of this result holds also for nonmonotonic
CPSs.
As for the upper bounding networks described in Section 3, for
a generic CPS their structure remains the same as for the mono-
tonic case. The only difference lies in the values taken, at stage
j = 1, ..., N , by the total service rate of the j-th GPS nodes, by the
GPS weights, and by the parameters of the policing function at that
stage.
The definition ofRupnj

,Rsatnj
, as well as ofRupnj

(Y(t)) in Theorem 3.2
assume that the system is monotonic. In the most general version,
the definition of these parameters is the following. For a generic
network (n, S), let I(nj , nj+1, ..., nN ) be the set of all possible
states of the CPS in which nodes n1, ..., nj−1 are not active. Then:

• Rupnj
= minI∈I(nj ,nj+1,...,nN )Rnj (I)

• Rsatnj
= minI∈I(n1,n2,...,nN )Rnj (I)

• Let us indicate with U(j,Y(t)) the subset of the nodes of the
CPS composed by those nodes which are associated to active
nodes in the network at time t, plus nodes nj , nj+1, ..., nN .
Then

Rupnj
(Y(t)) = min

I∈U(j,Y(t))
Rnj (I)

Moreover, in the upper bounding networks described in Section 3,
for every couple of GPS nodes (k, j), such that 2 ≤ j ≤ N ,
1 ≤ k < j, let us consider the corresponding nodes in the CPS.
If whenever queue nk gets active, the service rate at node nj in-
creases, then we put Sk,j = 0, or equivalently, we assume no traf-
fic goes from stage k to stage j. In this way the upper bounding
network we obtain is monotonic even if its associated CPS is not,
and all the results on stability and bounds hold also for this case.

5. NUMERICAL RESULTS
Through the use of the method just introduced, each network (n,S)
respecting respecting Theorem 3.2 leads to sufficient stability con-
ditions for the CPS we are starting with. In other words, each net-
work (n,S) respecting Theorem 3.2 identifies a set of values for the
long term rates (ρ1, .., ρN ) for which stability can be ensured. Fur-
thermore, a bound on backlog and delay can be computed for each
set of stable arrival rates (ρ1, .., ρN ).

In this section we first present a set of scaling values Sw that re-
spects Theorem 3.2. Then we show how to model a simple, but
realistic, wireless scenario through the use of a CPS model. Then,
we compare the analytical sufficient condition for stability and the
bounds for packet delay with the set of achievable rates and per-
packet delay obtained through the simulation of the wireless sce-
nario. Please note that, even fixing the scaling values to Sw, the
number of networks increases factorially with the number of queues
in the CPS. Nevertheless, depending on the particular goal that is
pursued, the formulation of the method is such that it can be easily
simplified for deriving practical results. See [15] for an example.

5.1 Setting the scaling values

In order to reduce the complexity of the method, we present a first
set of scaling values Sw that respects Theorem 3.2. Please note
that Sw is not the only possible choice for the scalers of the upper
bounding networks.

THEOREM 5.1. It is given a CPS and a network (n,Sw), where,
for any stage j and for any p ∈ [1, ..., j − 1], Sw is:

Swj,p =
Rupnj
−Rp−upnj

Rupnp

, (9)

withRp−upnj
the service rate at the CPS node nj when the set of CPS

nodes [np, ..., nN ] is active. Then (n,Sw) satisfies Theorem 3.2 and
it is therefore an upper bounding network for the CPS.

For the proof see Section 8.4. Let us show what is the intuition
behind the choice of scaling values in this result. Let us consider
stage j and a state vector Y for the upper bounding network, whose
first GPS active node for the fresh traffic is at stage p < j. What-
ever is the subset of active queues for the fresh traffic at stages
[p, ..., j − 1], this choice of scaling values makes the traffic com-
ing from stage p alone reduce the service rate at Rp−upnj

, i.e., as all
the queues for the fresh traffic at stages [p, ..., j − 1] were active.
The effect of this approximation is mitigated by the fact that in our
method we use different upper bounding networks, associated to
different assignments of CPS nodes to stages.

5.2 Description of the scenario
In order to evaluate the performance of the introduced method in
terms of quality of the achieved bounds, on the stability region and
on the per-packet delay, we introduce a simple, but realistic, ex-
ample where the CPS model applies. We consider a scenario with
Device-to-Device (D2D) transmission-receiver pairs [1]. By means
of D2D communications, devices transmit to the intended receiver,
typically in proximity, by direct communication, i.e., without pass-
ing through a central entity. Depending on the implementation,
D2D communications can also reduce the role of the central en-
tity in terms of synchronization and management by self organiz-
ing transmissions [16]. In the case under analysis, we consider the
D2D transmission pairs able to sense surrounding interference and
choose the best Modulation Coding Scheme (MCS) that allows de-
coding at the receiver. In practice, we use a Full Frequency Reuse
scheduling approach, i.e., transmitters exploit the whole available
bandwidth when they have traffic to serve and simultaneous trans-
missions are enabled by means of the correct selection of MCSs.
We assume a static scenario, where devices do not move and chan-
nel characteristics do not change over time. If so, the interference
sensed at the receiver is univocally determined by the set of active
transmitters in the system. Due to the fact that MCSs are chosen
depending on interference, the throughput achieved by each trans-
mitter, a.k.a, the service rate of its transmission queue, is univocally
determined by the set of active transmitters at any time t. There-
fore, the presented scenario can be studied by a CPS model.

5.3 Stability Region Evaluation
In the following section we compare the analytical sufficient condi-
tion for stability with the set of achievable throughput we got from
the simulations of the presented wireless environment. We evalu-
ate the particular scenario depicted in Fig. 2, where 3 D2D pairs are
present. Larger scenarios can be easily studied, though.

Table 1 summarizes the values of the variables used during the sim-
ulations. We use a Free Space Path Loss model. Incoming traffic at



Figure 2: Scenario under analysis

Table 1: Simulation Setup
Carrier 2.4 GHz

Transm. Bandwidth 20 MHz
Distance between D2D TX/RX 10 m
Distance D2D RX Interfere TX ∼ 30 m

N 3.98 ∗ 10−18 W/Hz
PTX 200 mW

max. packet length 12,000 bits
max. transmission rate 90 Mb/s

the transmission queues was following a leaky bucket characteriza-
tion, with fixed burstiness (12000 bits, i.e., a packet) and long term
rates varying from zero to the maximum allowed transmission rate
(90 Mb/s).

The analytical representation of the sufficient conditions for stabil-
ity of the presented scenario can be achieved directly from Theo-
rem 3.3. In particular, analysing network (n,Sw), sufficient condi-
tions for stability are:
ρn1 ≤ Rsatn1

,

ρn2 ≤ Rupn2
−

Rup
n2
−Rsat

n2
Rsat

n1

ρn1 ,

ρn3 ≤ max(Rsatn3
, Rupn3

−
Ru

n3
p−Rsat

n3
Rsat

n1

ρn1 −
Rup

n3
−R2−up

n3

R
up
n2

ρn2).

(10)

The union of the sufficient conditions for stability achieved from
any of the possible sorting n is the analytical representation of the
sufficient conditions for stability obtained through the method in-
troduced in Section 3.

In Fig. 3 we show both the sufficient conditions for stability achieved
through (10), both the set of achievable throughputs obtained through
simulations, i.e., by means of Montecarlo experiments. Fig. 4 rep-
resents instead the difference among the two, taking as reference
the maximum achievable rate of D2D-TX 3. As expected, the suf-
ficient conditions for stability underestimates the set of achievable
rate obtained through simulation. The maximum underestimation
of the achievable rate D2D-TX 3 is close to 25 Mb/s. By the
way, such underestimation is registered in very small parts of the
stability region. Indeed, the average underestimation achieved an-
alytically is as low as 5.92Mb/sec, when the average achieved by
D2D-TX 3 is 41.25Mb/s. All in all, even if achieved by means of
worst case analysis, the sufficient condition for stability are really
close to the set of achievable rates obtained through simulation.

Figure 4: Error Maximum Achievable Rate (Mb/s), D2D-TX 3.

5.4 Evaluation of Delay Bounds
In order to evaluate the delay bounds presented in Section 3.2, for
each of the simulations used in Section 5.3, we computed the per-
packet simulated delay. In case the arrival rates used in the sim-
ulation were a set of stable arrivals from (10), we compared the
per-packet simulated delay with the delay bound achieved through
our methodology. In particular, for each D2D pair, we evaluated the
ratio among the worst per-packet simulated delay and the its bound.
The average ratio among the worst per-packet simulated delay and
the bound computed as in Section 5.3 has been of the 88.95% ±
2.64% (95% confidence interval). The minimum registered ratio
was 66.41%, while the maximum ratio has been 99.69%. As ex-
pected, the bound on the delay has never been violated. Fig. 5
presents the delay distribution of the three D2D pairs per-packet
delay when the difference among the bound and the simulation was
the greatest.

As it is clear from the simulations performed, the bound on the per-
packet delay is close to the one a CPS server could experience, even
though we analysed the system through the use of upper bounding
networks.

6. CONCLUSIONS
In the present paper, we propose a new method for the analysis
of CPSs, valid for any number of nodes, and we describe a tech-
nique for deriving practical results, which exploits the character-
istics of the considered system. Our results show that even on a
worst case framework as Network Calculus, taking into account
the dynamics of the system through a characterization of the input
traffic brings to substantially better resource allocations than those
obtainable through a static model of the system. We plan to extend
this work in two main directions. On one side, we plan to extend
our framework to include CPS where nodes are interconnected, and
to consider dependency on queue length rather than only on queue
occupancy. On the other hand, we plan of applying our method to
interference limited wireless scenarios, to multiprocessor systems,
in data centers, and in general on all those CPS systems for which
simulation has been so far the main method of analysis, in order to
get some insight on their performance.
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8. APPENDIX
8.1 Proof of Theorem 3.2
If (3) is substitute into (1), we get that:

Oj(Y(t)) ≤ Rupnj
(Y(t)) ≤ Rnj (Y(t)) (11)



Here Rnj (Y(t)) is the service rate of queue nj of the CPS when
the queues active at the CPS at time t are only all those which cor-
respond to active queues at the network at time t. (11) ensures that
the service rate of each queue of the network is always inferior to
the one of the correspondent queues in the CPS, when all active
queues in the network are associated to active queues at the CPS.

We now prove that such property is sufficient for the network to
respect Theorem 3.1. That is, we prove that if (11) holds at any
node and any time t ≥ 0, then Oj(Y(t)) ≤ Rnj (I(t)) for any
node j and any time t ≥ 0. We prove by induction. Given arrivals
are packetized, we assume time is discrete, and we consider the
sequence of relevant network events, given by packet arrivals and
departures at a node (we consider events taking place both at the
CPS and at the network).

Let us consider the general case in which queues are nonempty at
t = 0. We assume at each CPS queue backlog for fresh arrivals
is the same, at t = 0 as at its corresponding queue in the network.
Let us consider the first event of packet departure, at t1 and let us
assume that it takes place at a node in the network. Until the first
event of packet departure, Oj(Y(t)) ≤ Rnj (I(t)) holds for any
node j. Indeed, as arrivals are the same at every time instant at
each queue and at its corresponding queue in the network, until t1
there has been no queue which is empty at the CPS and active at the
network, or vice versa, so that ∀ j, ∀ t ∈ [0, t1], Rnj (Y(t)) =
Rnj (I(t)). The first event of packet departure cannot be at at a
node of the network, otherwise this would mean that that packet
has been served faster at that node, at some time t < t1. This com-
pletes the first step of induction.
For the k-th step, we prove it by contradiction. We assume the net-
work satisfies Eq. (11), until time t∗, with tk ≤ t∗ ≤ tk+1, where
tk, tk+1 are the times of the last relevant network event before t∗,
and of the first after t∗, respectively. So we assume at t∗ at least one
of the queues dedicated to the fresh sources in the network is served
faster than the corresponding node of the CPS, i.e., Theorem 3.1.
That is, there exist a node j such that Oj(Y(t∗)) > Rnj (I(t∗)).
Because of Eq. (11), Oj(Y(t∗)) ≤ Rnj (Y(t∗)). As the CPS is
monotonic, this implies that at time t∗ at least one of the active
queues in the CPS is associated to an empty queue in the network.
Due to the fact that the arrivals are exactly the same at all CPS
queues and at the mapped queues of the network, the queue that is
empty in the network and not in the CPS should have been served
faster than at the CPS, at least for an instant, in a previous moment
of t∗, which is in contradiction with what assumed.

8.2 Proof of Theorem 3.3
As the considered upper bounding network associated to the couple
(n,S) and satisfying Theorem 3.2 is feed forward, we analyze it
stage by stage. At each stage, we compute the service curve of the
GPS node for fresh traffic. In what follows, we show that if stages
1 to j − 1 are stable, the service curve for fresh traffic at the j-th
stage, j = 1, ..., N is:

βnj (t) = max

Rsatnj
t,

[(
Rupnj
−
j−1∑
p=1

Sj,pρnp

)
t− Tnj

]+
(12)

where

Tnj =

∑j−1
p=1 Sj,pσ

∗
np

Rupnj −
∑j−1
p=1 Sj,pρnp

σ∗np
=

σnp , if ρnp ≤ Rsatnp
,

σnp +
(ρnp−R

sat
np

)(
∑p−1

k=1
Sp,kσ

∗
nk

)

R
up
np−Rsat

np
−
∑p−1

k=1
Sp,kρnk

otherwise.
(13)

Note that [x]+ stands for max(x, 0). We show that these expres-
sions hold by induction.
At first stage the service curve is βn1(t) = Rsatn1

t. If the node
is stable i.e. if ρn1 ≤ Rsatn1

, a valid arrival curve for the traffic
going from stage 1 to stage 2 (and to each of the other stages) is
ρn1t + σn1 . Note that for simplicity we do not use in the output
characterization the link limit of the serving node. Then after pass-
ing the scaler and the policer, an arrival curve for such traffic at the
input of the GPS node of the second stage, is

γn2 = min
(
(Rupn2

−Rsatn2
)t, S2,1ρn1t+ S2,1σn1

)
.

The service curve offered by the GPS node to this traffic is (Rupn2
−

Rsatn2
)t. Therefore the arrival curve for this traffic at the output of

the second stage is the same as at its input. By exploiting the well
known formula for the leftover service curve at a GPS node [9], a
service curve for fresh traffic at the second stage is:

βn2(t) = max
(
Rsatn2

t, [(Rupn2
− S2,1ρn1)t+ Tn1 ]+

)
,

where:

Tn1 =
S2,1σn1

Rupn2 − S2,1ρn1

,

The node is stable (and the backlog at the queue for fresh traf-
fic bounded) if ρn2 ≤ max(Rsatn2

, Rupn2
− S2,1ρn1),.u.e. if the

fresh flow rate is inferior than the service rate of the leftover ser-
vice curve. An arrival curve for the traffic going from the second
stage to each of the following ones is given by

γ′n2
(t) = (γn2 � βn2)(t) = ρn2t+ σ∗n2

,

where γn2 is the arrival curve of the fresh traffic assigned to the
second stage, i.e. the leaky bucket characterization given by the
couple {ρn2 , σn2}. � is the min-plus deconvolution operator [6].
σ∗n2

is given by:

σ∗n2
=

σn2 if ρn2 ≤ Rsatn2

σn2 +
(ρn2

−Rsat
n2

)S2,1σn1

R
up
n2
−Rsat

n2
−S2,1ρn1

otherwise

Let us now assume that (12) holds up to stage j−1 and that all these
stages are stable. Then, a valid arrival curve for the flow coming
from the generic upper stage k ∈ [1, ..., j − 1] is given by:

γ′k(t) = (γnk � βnk )(t) = ρnk t+ σ∗nk
,

where σ∗nk
respects (13). An arrival curve for the traffic entering

the GPS node at stage j coming from upper stages, at the output of
the policer, γINj (t), is:

γINj (t) = min

(
(Rupnj

−Rsatnj
)t,

j−1∑
k=1

Sj,kρnk t+

j−1∑
k=1

Sj,kσ
∗
nk

)
.

We note that γINj (t) is also an arrival curve for the same traffic at
the node. Using again the result for the leftover service curve, the
service curve for the traffic coming from the outside source at j-th
stage satisfies (12). Again, by imposing the node stability condition
we get ρnj ≤ max(Rsatnj

, Rupnj
−
∑j−1
p=1 Sj,pρnp).

8.3 Proof of Theorem 3.4



The proof follows the same line as the one of Theorem 3.3. Once
the service curve for fresh flow is derived, backlog and delay bounds
for fresh traffic are derived as bounds to the maximum vertical and
horizontal distance between arrival curves and service curves, ex-
ploiting some basic Network Calculus results [6]. We already noted
that backlog bounds for queues in the network are also valid bounds
for the corresponding CPS queues. We now prove that the same
holds also for delay bounds. Let us compute the delay of a generic
bit entering at time t its queue nj at the CPS and at the j th queue
for fresh traffic. Respectively, qnj (t) and qj(t) are the backlog at
those queues at time t. The delay at the CPS is:

DCPS = t′ − t, (14)

where t′ is the moment in which∫ t′

t

Rnj (x) dx = qnj (t) + 1.

The delay at its corresponding queue j is instead:

Dj = t′′ − t, (15)

where t′′ is the moment in which∫ t′′

t

Rj(x) dx = qj(t) + 1.

Considering that Rj(t) ≤ Rnj (t) at any time t, then:∫ B

A

Rnj (x) dx ≤
∫ B

A

Rnj (x) dx (16)

for any interval [A,B] chosen. Then, due to the fact that qj(t) ≥
qnj (t), it directly follows that t′′ ≥ t′, proving the theorem.

8.4 Proof of Theorem 5.1
Let us assume a generic system state Y for the network introduced
and k be the first stage whose (Y)k = 1. Substituting (9) into (3)
we can obtain:

j−1∑
p=1

Op(t)Sj,p ≥ Ok(t)Sj,k = Rupnj
−Rk−upnj

, (17)

that satisfies the upper bounding condition in Theorem 3.2.


