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A Benchmark Database for Myoelectric Movement
Classification

Manfredo Atzori, Arjan Gijsberts, Ilja Kuzborskij, Simone Heynen, Anne-Gabrielle Mittaz Hager,
Olivier Deriaz, Claudio Castellini, Henning Müller, and Barbara Caputo

Abstract—We describe the NINAPRO database, a publicly
available resource that aims to support research on advanced
myoelectric hand prosthetics. The database is obtained by jointly
recording surface electromyography signals from the forearm and
kinematics of the hand and wrist while subjects perform a pre-
defined set of actions and postures. The current milestone release
of the database contains data obtained from 27 intact subjects
performing 52 finger, hand, and wrist movements. Additional
data acquisitions from both intact and amputated subjects are
ongoing and will be added periodically to the database. Besides
describing the acquisition protocol and processing procedures,
we also present benchmark classification results using a variety
of feature representations and classifiers. Statistical analysis on
the these results provides empirical evidence that classification
accuracy is negatively correlated with the subject’s Body Mass
Index.

Index Terms—

I. INTRODUCTION

Since the 1960s, pattern recognition algorithms have been
applied on surface electromyography (sEMG) signals to con-
trol simple mechanical grippers with a single Degree of
Freedom (DOF) [1, 2, 3]. The principal goal of this research
was to predict the intent of an amputee and to use this to
control a dexterous, self-powered hand prosthesis. Indeed, an
amputee should be able to dexterously control the prosthesis
just by desiring to so in a natural way. Still, 45 years later
this goal has not yet been reached: one quarter to one third
of the amputees reject self-powered prostheses due to low
reliability, weight, trouble with maintenance, low dexterity,
and poor visual appearance [4, 5].

A major obstacle towards this goal is the lack of a standard
benchmark for sEMG-based control of hand prostheses. To
the best of our knowledge, all studies in this field have been
performed using proprietary data and are limited to groups that
possess the equipment, expertise, and manpower to acquire
the necessary data. As a consequence, the specific application

M. Atzori and A. Gijsberts contributed equally to this work.
M. Atzori and H. Müller are with the Department of Business Information

Systems at the University of Applied Sciences Western Switzerland (HES-SO
Valais), Sierre, Switzerland.

A. Gijsberts, I. Kuzborskij, and B. Caputo are with the Institute de
Recherche Idiap, Martigny, Switzerland.

S. Heynen and A.-G. Mittaz Hager are with the Department of Physical
Therapy at the University of Applied Sciences Western Switzerland (HES-SO
Valais), Leukerbad, Switzerland.

O. Deriaz is with the Institut de recherche en réadaptation, Service de
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domain is not widely accessible for researchers of other fields,
such as machine learning or signal processing. Moreover, the
scale of acquisition is often limited to the minimum required
to verify a specific scientific hypothesis— this usually means
a dozen intact subjects or a few amputees. Last but not least,
there is no standard for experimental setups and protocols
(e.g., the set of movements, electrode placement), nor are
standardized databases publicly available. This is in contrast to
several other research communities, where wide acceptance of
common, publicly available benchmark databases has consid-
erably pushed progress and helped to identify open challenges.
This has been the case for the fields of computer vision
(e.g., PASCAL [6], CALTECH 256 [7], SUN [8]), robotics
(e.g., Radish [9], RGB-D SLAM [10]), medical informatics
(e.g., ImageCLEF [11]), as well as many others. This lack
of standard benchmarks decreases the reliability of research
results and reduces the possibility that new techniques can be
applied successfully in commercial applications. The diversity
in experimental setups and protocols makes it infeasible to
compare results among different studies, making it hard to
evaluate whether certain approaches are actually to be pre-
ferred over others.

We believe that the time is ripe for the biorobotics com-
munity to have such a benchmark. To this end, we present
the milestone release of the Non-Invasive Adaptive Prosthetics
(NINAPRO) database, which was succinctly introduced by
Atzori et al. [12]. The database is presented jointly with the
acquisition setup and protocol, data processing routines, and
characteristics of the subjects involved in the data acquisition.
The actual data consists of sEMG and kinematic signals of the
wrist and hand gathered from 27 intact subjects performing
52 hand movements. These movements were selected from
the relevant literature and standard rehabilitation practice
guidelines. Collection of the database is a continuous and
ongoing effort, and additional acquisitions from intact as well
as amputated subjects will be added.

Aside from describing the acquisition procedure, we also
present an extensive benchmark comparison using a large va-
riety of popular feature extraction and classification methods.
The results indicate that non-linear classifiers are required
to successfully discriminate all 52 movements. Furthermore,
regression analysis on the classification results reveals that
classification accuracy is negatively correlated with a subject’s
Body Mass Index (BMI).

A detailed description of the acquisition setup and pro-
tocol follows in Section II. Data processing routines will
subsequently be presented in Section III, which includes
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a principled relabeling strategy to correct erroneous labels.
Section IV presents a benchmark evaluation on the database
as well as a multiple regression analysis to investigate which
subject properties affect classification accuracy. Conclusions
and future work are subsequently covered in Section V.

II. BUILDING THE NINAPRO DATABASE

A. Acquisition setup

The NINAPRO database in its present release combines
kinematic hand and wrist data, acquired using a CyberGlove
and an inclinometer, with muscular activity data acquired
using Otto Bock sEMG electrodes. All devices are certified
according to medical and electric safety standards in the
United States and the European Union.

1) Surface electromyography: The muscular activity is
gathered using ten active double-differential OttoBock My-
oBock 13E200 sEMG electrodes1, which provide an amplified,
bandpass-filtered, and Root Mean Square (RMS) rectified
version of the raw sEMG signal. The electrodes’ amplification
is set to a factor of 14000. Particular care was taken when
deciding the placement of the electrodes on the forearm or
stump. Choosing the right positions of the electrodes is usually
regarded as a crucial step and several attempts have been made
at targeting forearm muscles on healthy subjects [2, 13] as
well as on amputees [14]. However, early research on pattern
recognition for sEMG [15, 16] (recently confirmed in [17])
proved that targeted placement of electrodes is not required
when doing posture classification, since pattern recognition
techniques can compensate for suboptimal placement and may
even take advantage of muscle cross-talk.

Eight electrodes are uniformly placed around the forearm or
stump using an elastic band, at a constant distance from the
radio-humeral joint just below the elbow. Two additional elec-
trodes are placed on the large flexor and extensor muscles of
the forearm (see Figure 1). This positioning of the electrodes
also gives the opportunity to improve classification results by
applying linear and non linear spatial registration algorithms,
as described in Atzori et al. [18].

2) Kinematics: The kinematic configuration of the hand is
measured using a 22-sensor CyberGlove II dataglove2, shown
in the right panel of Figure 1. The CyberGlove is a light
fabric, elastic glove, onto which 22 strain gauges are sewn.
The sewing sheaths are chosen carefully by the manufacturer,
so that the gauges exhibit a resistance that is proportionally
related to the angles between pairs of hand joints of interest.
The device returns 22 8-bit values proportional to these angles
for an average resolution of less than one degree depending
on the size of the subject’s hand, careful wearing of the
glove, and the angular range of the considered joint. Note
that we record raw sensor values rather than estimated joint
angles, the reason being that reliable calibration of the glove
is prohibitively time-consuming. In addition, most machine
learning techniques are invariant to linear scaling of the
data and calibration is in these cases unnecessary. If desired,

1Otto Bock HealthCare GmbH, http://www.ottobock.com
2CyberGlove Systems LLC, http://www.cyberglovesystems.com

Fig. 1. Placement of the electrodes: A. sEMG electrodes placed on finger
extensor muscles (A.1 Equally spaced electrodes; A.2 Spare electrode);
B. sEMG electrodes placed on finger flexor muscles (B.1 Equally spaced
electrodes; B.2 Spare electrode); C. all the sensors positioned on the arm
(C.1 Equally spaced electrodes; C.2 Spare electrode; C.3 Inclinometer; C.4
CyberGlove II);

exact joint angles can be obtained by calibrating the glove a
posteriori for a given subject.

In addition to the CyberGlove, a standard commercially
available 2-axis Kübler IS40 inclinometer3 is fixed onto the
subject’s wrist to measure the wrist orientation. The inclinome-
ter has a range of 120� and a resolution of less than 0.15�.

3) Data acquisition: Data from the electrodes and the
inclinometer are acquired at a constant interval of 100Hz
using a standard National Instruments DAQ card (NI-DAQ
PCMCIA 6024E, 12-bit resolution). Kinematic data from the
CyberGlove are recorded over a Bluetooth-tunneled serial port
at slightly less than 25Hz. Each data sample is associated with
an accurate timestamp (using Windows Performance Counters)
and directly written to mass storage.

B. Experimental protocol
Preceding the experiment, each subject is requested to give

informed consent and to fill in a brief questionnaire con-
cerning clinical data. These data include age, gender, height,
weight, fitness, laterality, and self-reported health status. In
the case of amputees, we also note the age, type, and reason
of the amputation; information about the use of prostheses
(cosmetic, body-powered, self-powered, etc.) along with the
(dis)advantages and consequences of their usage; type and
degree of phantom limb sensation and pain. Moreover, we take
pictures of the arm with and without the acquisition setup to
be able to check macroscopic differences. After finalizing the
forms, the subject is asked to sit comfortably on an adjustable
chair in front of a table with a large monitor, while the
sEMG electrodes, dataglove, and inclinometer are worn on
the right arm. Amputees wear the sEMG electrodes on the
stump instead, while the dataglove and the inclinometer are
worn on the intact limb. The subjects are asked to bilaterally
perform the movement shown on the screen according to the
bilateral imitation procedure [17].

First, the subjects have to perform a training sequence
that involves three repetitions of a selection of movements

3Fritz Kübler GmbH, http://www.kuebler.com
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in order to get accustomed to the protocol. Then, the real
data acquisition starts and the subjects have to repeat ten
times the 52 movements. Each movement repetition lasts 5 s
and is followed by 3 s of rest. The movements have been
selected from the hand taxonomy and robotics literature (see,
e.g., [19, 20, 21, 22, 23]), as well as from the Disabilities of
the Arm, Shoulder and Hand protocol for functional move-
ments [23].

The experiment is divided into three exercises:
1) 12 basic movements of the fingers (flexions and exten-

sions);
2) 8 isometric and isotonic hand configurations and 9

basic movements of the wrist (adduction/abduction, flex-
ion/extension, and pronation/supination); and

3) 23 grasping and functional movements—in this case, ev-
eryday objects are presented to the subject for grasping,
in order to mimic a daily-life action.

See Table I and Figure 2.
The exercises last respectively 16, 23, and 31 minutes.

Subjects are allowed short breaks between exercises to avoid
muscle fatigue, such that the total duration of the experiment is
around 100 minutes (including preparatory steps and training).
The sequence of movements is not randomized in order to
induce unconscious movement repetitions into the subjects.
The experiment received the approval of Ethics Commission
of the Canton of Valais (Switzerland), where all acquisitions
have been performed.

C. The NINAPRO database
Finally, the data of each subject are stored anonymously in

a database and made available on a website4. The first version
of the database contains data of 27 intact subjects (20M/7F,
25/2 right-/left-handed, age 28.0± 3.4 y). For each subject
and each exercise, three data files are stored in plain ASCII
format, containing the signals from (1) the electrodes and the
inclinometer, (2) the cyberglove, and (3) the video stimulus.
The data are arranged in a line, consisting of a timestamp plus
the sensor values. The clinical data and five pictures (three
previews of the data of each exercise plus two pictures of
the forearm and of the hand with and without the acquisition
setup) are also stored for each subject.

III. DATA PROCESSING

The acquisition software described in the previous section
stores individual modalities to separate files. Most practi-
cal applications, however, require further processing of the
data. These processing steps include synchronization of the
kinematic and sEMG streams with the stimulus, removal of
noise components by filtering the data, and finally correcting
mislabeled samples using a relabeling strategy. The described
processing steps are the result of initial experiments and in-
tended specifically to support the analyses in Section IV, while

4The database can be accessed (after the request of credentials) at http:
//ninapro.hevs.ch. Reviewers can access this resource using the username
“Reviewer” and password “tnsre2013”. Supporting files for the acquisition
setup and protocol (e.g., software and stimulus videos) can be obtained on an
individual basis by contacting the authors.

TABLE I
SYNTHETIC DESCRIPTIONS OF THE 52 MOVEMENTS OF INTEREST, ALONG

WITH A REFERENCE, IF AVAILABLE.

# Description Ref.

Fi
ng

er
m

vt
s. 1-2 Index flexion and extension [14]

3-4 Middle flexion and extension [14]
5-6 Ring flexion and extension [14]
7-8 Little finger flexion and extension [14]

9-10 Thumb adduction and abduction [14]
11-12 Thumb flexion and extension

H
an

d
po

st
ur

es

1 Thumb up [24]
2 Flexion of ring and little finger; thumb flexed

over middle and little
3 Flexion of ring and little finger [25]
4 Thumb opposing base of little finger [25]
5 Abduction of the fingers [25]
6 Fingers flexed together [25]
7 Pointing index [26]
8 Fingers closed together [27]

W
ris

tm
vt

s. 1-2 Wrist supination and pronation (rotation axis
through the middle finger)

[24]

3-4 Wrist supination and pronation (rotation axis
through the little finger)

5-6 Wrist flexion and extension [24]
7-8 Wrist radial and ulnar deviation [27]

9 Wrist extension with closed hand

G
ra

sp
in

g
an

d
fu

nc
tio

na
lm

ov
em

en
ts

1-2 Large and small diameter [19]
3 Fixed hook [19]
4 Index finger extension [19]
5 Medium wrap [19]
6 Ring [19]
7 Prismatic four fingers [19]
8 Stick [19]
9 Writing tripod [19]

10-12 Power, three finger, and precision sphere [19]
13 Tripod [19]

14-15 Prismatic and tip pinch [19]
16 Quadpod [19]
17 Lateral [19]

18-19 Parallel extension and flexion [19]
20 Power disk [19]
21 Open a bottle with a tripod grasp [23]
22 Turn a screw (grasp the screwdriver with a

stick grasp (8))
23 Cut something (grasp the knife with an index

finger extension grasp (4))
[23]

the publicly available NINAPRO database contains the raw data
as described in the previous section. Implementations of our
processing methods are available separately upon request.

A. Synchronization and Filtering
Synchronization of the input modalities is relatively straight-

forward with the NINAPRO database, since each datum is
recorded with an accurate timestamp. The difference in sam-
pling rates is eliminated by linearly interpolating all the data
streams to the highest recording frequency (i.e., 100Hz for
the sEMG stream). The following processing step is to low-
pass filter the sEMG signals at a cutoff frequency of 5Hz
using a zero-phase second order Butterworth filter. This low
cutoff frequency is justified in our setting, since the RMS
filtering onboard the Otto Bock electrodes drastically changes
the spectral properties of the signal. In contrast, for raw sEMG
recordings the relevant spectral domain is typically reported as
approximately between 15 to 500Hz.
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(a) Basic movements of the fingers (flexions and extensions).

(b) Isometric, isotonic hand configurations (”hand postures”).

(c) Basic movements of the wrist.

(d) Grasping and functional movements.

Fig. 2. The 52 movements of interest.

B. Relabeling

Human reaction times and attention spans inevitably cause
some misalignment between the stimulus video and the actual
movement as performed by the subject. An example of this
misalignment is shown in the left panel of Figure 3, which
overlays the movement label imposed by the video (marked
as “movement”) on top of the sEMG activity. In this case, the
subject finishes the movement well before the video ends. A
considerable number of samples near the end are erroneously
marked as posture, while the subject in fact already returned
to the rest position. To reduce this label “noise”, we devise an
offline relabeling algorithm that constrains movement labels
to those samples in which there is increased sEMG activity.

Similar to the onset detection approach by Staude [28],
we first remove irrelevant autoregressive components by
whitening the rectified signals using a multivariate VAR(p)
model [29]. In our case, an order of p = 20 was found to
perform adequately. Detection of sEMG activity is restricted
to the original video window extended with an additional 100
samples at the end to allow subjects to finish a movement with
up to 1 s of delay. The resulting feasible movement window
(see Figure 3, center) of length T is then divided in rest-
movement-rest segments marked by change points t0 and t1.

The optimal change points are found by maximizing the
Generalized Likelihood Ratio (GLR) between the rest model
✓0 and movement model ✓1. The corresponding objective

function can be written as

argmax

1t0T
argmax

t0t1T
sup

✓02⇥0

sup

✓12⇥1

2

4
t0�1X

i=1

ln p✓0(yi) +

t1�1X

j=t0

ln p✓1(yj) +

TX

k=t1

ln p✓0(yk)

3

5 .

(1)

Simple exhaustive search is adequate for finding optimal
t0 and t1, while ✓0 and ✓1 are optimized by a maximum
likelihood estimate of a multivariate Gaussian distribution over
the corresponding window segments.

To improve segmentation on noisy data, we also impose
a minimum duration for both the rest (i.e., t0 � 10) and
movement window segments (i.e., t1� t0 � 0.3T ). Moreover,
the reasonable assumption that sEMG activity is higher during
movements than during rest is explicitly enforced by requiring
the sample variance s2 to be higher during movements (i.e.,
s21 � s20). This simple condition is effective at preventing er-
roneous outcomes in cases where a feasible window is lacking
a clear initial rest. Finally, we impose a prior distribution
on any sample belonging either to rest or movement (i.e.,
random variables Ri and Mi). This prior is chosen uniformly
as p(Ri) = 0.1 for 1  i  T , and due to mutual exclusivity
p(Mi) = p(¬Ri) = 1� p(Ri). The effect of this prior is that
the algorithm will identify slightly larger movement windows,
which helps to ensure that the entire sEMG activity is captured
in the movement segment.

IV. ANALYSIS

Jointly with the acquisition protocol and the corresponding
database, we also present a classification benchmark obtained
with various feature extraction and classification methods.
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rest movement

# Samples
sE

M
G

A
ct

iv
ity

feasible win.

# Samples

Electrode 1 Electrode 2 Electrode 3

# Samples

Whitening Optimizing

GLR

Fig. 3. Illustration of the relabeling process consisting of whitening the rectified sEMG signal and optimization of the Generalized Likelihood Ratio within
the feasible window. The shaded area indicates time windows labeled as a non-rest movement. For clarity the figure displays only three out of ten electrodes.

These results are not only intended as a reference for future
work, but also to provide suggestions on which methods
perform particularly well with the given data. The compar-
atively large number of subjects in the database allow us
to subsequently determine the influence of various subject
properties on classification accuracy.

A. Classification Benchmark

Successful classification of movements from sEMG signals
depends to large extent on the type of feature representation
and classifier. To ensure that we establish (near) optimal per-
formance, we consider a variety of popular feature extraction
and classification methods. Aside from producing a direct
quantitative comparison of these methods, this benchmark
also investigates whether current state-of-the-art methods can
indeed attain satisfactory levels of performance on this chal-
lenging setting.

1) Methods and Experimental Setup: Feature representa-
tions used on sEMG signals can roughly be divided in three
categories, namely representations in the time domain, in
the frequency domain, and finally representations that relate
to both time and frequency domains [30, 5]. Among these,
representations in the time domain have traditionally been
popular for sEMG signals, due to ease of computation and
since they reduce a processing window to a scalar value.
As representatives of these simple time domain features we
consider Mean Absolute Value (MAV)5, the Variance (VAR),
and the Waveform Length (WL). A potential shortcoming of
these methods is that the drastic reduction to a scalar value
leads to a loss of information. As alternative representations
that preserve more information we therefore also include the
sEMG Histogram (HIST) and Cepstral Coefficients (CC). The
latter method applies a logarithm on the spectral coefficients
and subsequently maps the data back into the time domain by
means of an inverse Fourier Transform.

Frequency-domain features are commonly based on the
Fourier Transform, of which we consider the Short-Time
Fourier Transform (STFT) variant. An alternative represen-
tation that has recently gained popularity is the Discrete
Wavelet Transform (DWT). This transformation decomposes
the signal in terms of a basis function (i.e., the wavelet) at
different levels of resolution, resulting in a high-dimensional
frequency-time representation. Lucas et al. [31], however,

5Due to rectification onboard the Otto Bock electrodes, the MAV features
are in our case closely related to RMS features.

TABLE II

Method Configuration

Fe
at

ur
e

Ty
pe

s Mean Absolute Value (MAV)
Variance (VAR)
Waveform Length (WL)
sEMG Histogram (HIST) 10 bins, log. scale
Cepstral Coefficients (CC) first 5 coefficients
Short-Time Fourier Transform (STFT) 4-sample rect. window
marginal Discrete Wavelet Transform (mDWT) sym4 wavelet, 3 levels

C
la

ss
ifi

er
s Support Vector Machine (SVM) RBF kernel

Multi-Layer Perceptron (MLP) 1 hidden layer, sigmoid
k-Nearest Neighbors (k-NN)
Support Vector Machine (SVM) linear kernel
Linear Discriminant Analysis (LDA)

have demonstrated that for sEMG-based classification it is
sufficient to preserve only the marginals of each level of the
decomposition, thereby ignoring the time components of the
decomposition and drastically reducing the dimensionality of
the feature representation. In the following, this variant will be
referred to as marginal Discrete Wavelet Transform (mDWT).

In contrast to feature extraction methods, only a relatively
limited set of classification methods have been employed for
myoelectric movement classification. The classifiers consid-
ered here have all been used in related work and range from
traditional statistical methods to more recent machine learning
techniques. As simple methods we consider the well-known
Linear Discriminant Analysis (LDA), k-Nearest Neighbors
(k-NN), and a linear variant of the more recent Support Vector
Machine (SVM). These methods are in contrast to the more
powerful, non-linear classifiers. We consider the two most pop-
ular non-linear methods, namely the Multi-Layer Perceptron
(MLP) (i.e., an artificial neural network) and the SVM with
a Radial Basis Function (RBF) kernel. The motivation for
considering both linear and non-linear methods is to verify
whether the additional capacity of non-linear classifiers is in
fact required to obtain satisfactory performance. A listing of
the feature types and the classifiers and their configuration is
given in Table II. Further details of the experimental setup can
be found in the work of Kuzborskij et al. [32].

In accordance with the classification strategy by Englehart
and Hudgins [33], the filtered signals are segmented into
windows, for which we consider an increment of 10ms (i.e., 1
sample) and windows lengths of 100ms, 200ms, and 400ms.
Five movement repetitions are used to train the classifier
(subsampled at a regular interval of 10 samples), while all
samples of the remaining five repetitions form the test set.
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2) Results: Figure 4 presents the classification accuracies
for all feasible combinations of feature type, classifier, and
window lengths. Interestingly, several feature representations
achieve a similar accuracy of around 76%, indicating that
simpler features as MAV do not necessarily perform worse
than advanced variants as mDWT. Furthermore, the non-
linear SVM and MLP classifiers achieve similar maximum
performance given an appropriate feature representation, al-
though only SVM consistently achieves high performance
when combined with most of the feature representations.
The linear classifiers, on the other hand, perform poorly.
Even though LDA has been found adequate for small-scale
posture classification [34], our results demonstrates that linear
classifiers in fact do not scale to a large number of postures.
Finally, the optimal window length is dependent on both
the classifier and the feature representation, although in the
majority of cases the longer window length of 400ms is
preferable.

The classification accuracies in Figure 4 are encouraging,
considering the large number of movements. An accuracy of
76%, however, would almost surely not be acceptable from
the perspective of an actual end-user. Nonetheless, the scalar
classification score obfuscates the fact that misclassifications
are not evenly distributed over the duration of the movement.
Figure 5, which relates classification errors with the time
normalized for movement duration, demonstrates that misclas-
sifications are primarily concentrated during the movement
onset and offset. This is not surprising, since movements
are continuous trajectories that transition gradually from one
to another, in contrast to the abrupt changes of the discrete
movement labels. Consequently, a drop in accuracy occurs
primarily during these transitory periods, since the the change
in movement is not yet clearly evident from the input sEMG
signals.

This issue is illustrated in Figure 6, which visualizes ten
trials of four postures (i.e., those used by Castellini et al.
[13] plus the rest posture) for a single subject in the first
two principal components6. When concentrating solely on the
center of the movements (indicated by markers), then the
three postures appear reasonably well separated. However, the
trajectories overlap significantly on the transition from rest to
movement and vice versa, causing a reduction of separability
and hence misclassifications. This issue is relevant since (1)
it demonstrates that accuracy is best improved by better
distinguishing rest from movements during transitory phases,
and (2) some related studies enforce separability by solely
considering the center segment of the movement trajectory. A
consequence of the latter is that these studies report overly
optimistic classification results.

B. Statistical Analysis

The scalar average classification accuracy obfuscates how
the accuracy is distributed over either subjects or movements.

6More precisely, these postures are extracted using Principal Component
Analysis (PCA) over the entire dataset when using MAV features with a
window length of 200ms.

TABLE III
AVERAGED CLASSIFICATION ACCURACY WITH RESPECT TO SUBJECT

PROPERTIES.

Property Group # Subj. Accuracy

All 27 0.7401 ± 0.0394

Gender Female 7 0.7532 ± 0.0215
Male 20 0.7356 ± 0.0431

Height
< 172 cm 10 0.7537 ± 0.0207
172 to 180 cm 8 0.7497 ± 0.0422
� 180 cm 9 0.7167 ± 0.0421

Weight
< 65 kg 9 0.7528 ± 0.0184
65 to 75 kg 9 0.7512 ± 0.0416
� 75 kg 9 0.7164 ± 0.0418

Age
< 27 y 7 0.7489 ± 0.0228
27 to 29 y 10 0.7318 ± 0.0488
� 29 y 10 0.7424 ± 0.0363

It is however feasible that certain subjects perform consider-
ably worse than others (e.g., see the observations in [35]),
or that certain movements are harder to discriminate than
orders. Figure 7 demonstrates the distribution of classification
accuracy over either subjects and movements. In order to elim-
inate sensitivity to a particular classifier or feature extraction
method, the reported accuracy is the average accuracy over
all combinations of the SVM and MLP classifiers with MAV,
mDWT, HIST, and WL features based on window lengths
of 100ms, 200ms, and 400ms. All these combinations were
found to perform similarly (see Figure 4). In case of subjects,
there are no apparent outliers and the distribution does not
significantly deviate from normality (p = 0.338, Shapiro-Wilk
test). When considering the distribution over movements in
Figure 7b, on the other hand, we observe a single outlier
with very high performance, which corresponds to the rest
posture. While the onset and offset of non-rest movements
are often misclassified as rest, the rest posture itself is in fact
nearly always correctly classified. This is aided by the fact that
rest posture accounts for nearly 60% of all samples, causing
the classifiers to be biased towards correctly classifying this
specific class.

Even though the distribution over subjects is statistically
not distinguishable from a normal distribution, this does not
necessarily imply that all subjects are random samples from
a single probability distribution. In contrast, it is likely that
certain properties of the subjects affect classification accuracy.
Such a relation between a subject’s characteristics and classi-
fication accuracy is relevant in a clinical setting, as it helps to
anticipate the rate of success or satisfaction of a prospective
user of an active prosthesis. Table III lists the average accuracy
for the total set of all subjects and for the subsets based on
the properties asked in the questionnaire.

The results in Table III allow for several interesting observa-
tions, namely that classification accuracy is higher for female
participants and that the accuracy decreases considerably with
both subject height and weight. These observations, however,
are strongly correlated, since male subjects are commonly
taller and taller subjects are typically also heavier. This corre-
lation can be largely eliminated by aggregating the height and
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Fig. 4. Classification accuracies. Each bar represents method classification accuracy with respect to feature representation and window length, while line atop
the bar is one standard deviation of accuracy. Classifiers are grouped by feature representations and labeled by different colors. Window lengths are represented
in increasing order, namely 100ms, 200ms and 400ms and are tagged with different textures. LDA results are missing in case of the high dimensional STFT,
CC, and HIST features due to non-singularity of the covariance matrix.
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Fig. 5. Classification accuracy with respect to normalized movement duration
for kernel SVM with MAV features and windows of 100, 200 and 400ms.
This figure is representative for other combinations of classifiers and feature
types.

Rest Large Diameter Grasp
Precision Sphere Prismatic Pinch

Fig. 6. Trajectories within the two principal components of all ten trials
for three movements and the rest posture taken from a single subject. The
samples in the temporal center of the trajectory are indicated with markers.

weight properties into the well-known BMI, which also limits
the correlation with gender. Multiple regression analysis using
the subject gender, age, and BMI as independent variables
confirms that classification accuracy indeed decreases signif-
icantly with increasing BMI (p = 0.021, Student’s t test), as
demonstrated in Figure 8. On the other hand, the accuracy was
not found to depend significantly on either gender (p = 0.985)

or age (p = 0.110).
The negative relation between BMI and classification accu-

racy should not come as a surprise, since it is known that the
adipose layer in the skin acts as an insulator [36, Chapter
3]. As a result, the amplitude and signal-to-noise ratio of
the sEMG signal decrease, while cross-talk between muscles
increases [37]. Both effects deteriorate the quality of the sEMG
signal. To the best of our knowledge, our analysis is the first
empirical confirmation that this signal deterioration indeed
leads to significantly worse classification accuracy.

V. CONCLUSIONS AND DISCUSSION

This paper describes the release of the NINAPRO database,
which aims to form a standard benchmarking resource for the
biorobotics community. According to our knowledge, at the
state of the art this database is the public sEMG database
that includes more hand movements. The NINAPRO database
consists of muscular activity gathered in controlled conditions
using Otto Bock sEMG electrodes and kinematic data gathered
using a CyberGlove and an inclinometer. Particular care is
taken as far as electrode placement, device calibration, and
data acquisition and synchronization are concerned. So far data
is available for 27 intact subjects performing 10 successive
repetitions of 52 hand, wrist, and forearm movements of
interest. These movements have been selected via a careful
examination of the literature and standard rehabilitation guide-
lines. The timings, repetitions, and durations of the stimuli
were verified. The stimuli themselves are instructed using short
movies that the subjects are asked to imitate. This makes the
protocol extremely simple, stress-, and fatigue-free for the
subjects.

A benchmark evaluation using a variety of popular fea-
ture extraction and classification methods in a continuous
prediction setting reveals that the best performing methods
achieve an accuracy of around 76%. In contrast to some related
work, we found that the non-linear SVM and MLP classifiers
perform considerably better than the linear SVM and LDA.
Furthermore, the SVM with RBF kernel is to be preferred over
the MLP classifier, as it showed similarly high performance for
five out of seven feature represtations. This result also implies
that relatively simple features as MAV can perform just as
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Fig. 7. Histogram of the classification accuracies over (a) subjects and (b) movements. The solid line indicates a normal distribution fitted to the data.
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Fig. 8. Classification error versus the BMI for all 27 subjects as well as the
predictions by the linear regressor. The small variations in the predictions are
due to variations in age and gender among the subjects.

well as more advanced mDWT or STFT features, provided
that they are combined with an appropriate classifier.

Further investigation demonstrates that misclassifications
occur primarily during the movement onset and offset. The
explanation for this phenomenon is that the sEMG signals
are not yet (or not anymore) sufficiently discriminative in
these transitory phases between movement and rest. This result
implies that studies that ignore these phases are likely to
overestimate true performance, and that efforts on improving
movement classification in a realistic settings are best directed
towards these ambiguous phases of the movements.

Multiple regression analysis of the classification accuracy
with respect to several subject properties indicates that ac-
curacy decreases significantly with an increasing BMI of
the subject. While earlier studies have demonstrated that the
adipose layer (estimated here using BMI) has a negative
impact on the quality of the sEMG signal, our result is to
the best of our knowledge the first empirical confirmation that
this also affects movement classification accuracy. In contrast,
the accuracy was not found to depend significantly either on
subject gender or age.

A. Discussion and future work
Improvements to the setup: The classification results in

Section IV-A indicated that more advanced feature representa-
tions as mDWT did not yield improvements over the simpler
MAV or WL features. One possible explanation is that the

rectification step onboard the Otto Bock electrodes is removing
information that could potentially be exploited by advanced
feature extraction methods. To eliminate this possibility, we
are migrating the acquisition setup to a set of DelsysTM

Trigno Wireless R� electrodes. As opposed to the rectified and
filtered signals from the Otto Bock electrodes, the Trigno
electrodes return the raw sEMG signal at 2 kHz sampling rate.
Furthermore, these electrodes are wireless (thus less restrictive
for subjects) and also contain a 3-axis accelerometer. The
latter property will allow us to investigate to which extent
accelerometry can aid movement classification.

Second, it is of interest to also gather force data while
performing the actions of interest, rather than kinematic data
only. This has a double motivation: (a) sEMG can be naturally
associated with graded forces as well as with movements and
postures (see, e.g., [2, 38]); (b) the use of regression rather than
classification can dramatically increase the dexterity of the
control, shifting from a finite set of predetermined postures to
an infinite manifold of hand configurations. We plan to employ
the Finger-Force Linear Sensor (FFLS), a synergistic finger-
force measurement device [39]. Adaptation and calibration of
the new devices is already done, and we plan to include data
obtained using them in the next database release.

Further considerations: The database described in this
paper should be regarded a first milestone toward the larger
goal of providing the biorobotics community with a large-scale
database for use in hand prosthetics research. The experience
obtained with the acquisition protocol and setup using intact
subjects will prove useful in the next phase of acquisitions
from amputated persons. Posture recognition from amputees is
typically more difficult, since muscle activity decreases due to
lack of use and since muscles may be damaged due to trauma
or surgical intervention. The availability of data recorded
from amputees is however crucial to perform experiments
on movement classification that accurately reflects real-world
conditions.
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