
Using Semantic Web Technologies in Heterogeneous Distributed Database System:

A Case Study for Managing Energy Data on Mobile Devices

Zhan Liu, Anne Le Calvé, Fabian Cretton, Nicole Glassey

Institute of Business Information Systems

University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland

{zhan.liu, anne.lecalve, fabian.cretton, nicole.glassey}@hevs.ch

ABSTRACT

Managing energy data from multiple distributed and

heterogeneous sources is an important issue

worldwide. This study focused on using semantic web

technologies in an energy data management system.

Specifically, we provided a federated approach - a

mediator server - that allows users to access to multiple

heterogeneous data sources, including four typical

types of databases in energy data resources: relational

database, Triplestore, NoSQL database, and XML. A

proposed architecture based on this approach is then

presented and our solution can realize the data

acquisition and integration without the need to rewrite

or transform the local data into a unified data. We

further examined our architecture by a case study in a

Swiss energy company and tested the system based on

a mobile platform.

KEYWORDS

Semantic web, heterogeneous distributed database

system, SPARQL, RDF wrapper, database integration,

energy management, mobile application

1 INTRODUCTION

Along with the contributing global warming,

social concern over environmental problems has

increasingly become a hot issue in recent years.

Companies must systematically manage energy

use and handle as much energy information as

possible to get deep and quantitative knowledge of

the process of energy consumption [1]. As an

important part of information resource, energy

information resource supports energy efficiency

and influences the direction of future performance.

Reducing energy consumption in the residential

sector is important as well, because energy

demand in this sector is notably increasing

recently [2].

However, such information processing is not

managed by an integrated database where all of

the data relevant to an organization would be

stored and managed in one single unified and

integrated database. Rather, databases are non-

integrated, distributed and heterogeneous [3]. This

is especially evident in the context of an energy

database management system due to several

reasons. First and foremost, an energy database

management system was built according to the

characteristics of the energy usage in a specific

region. Thus, the requirements are diverse and as a

consequence, database systems in the field of

energy are rather distributed and complicated. For

example, electricity consumption function requires

its information system to quickly convert and store

a large body of non-relational data; thus, a NoSQL

database like MongoDB [4] fits very well in this

case. However, in other functions where the

structure of the data is stable with low variability,

and if such data have relationship with other data

in the same data source, a relational database

should be a good choice. Moreover, Triplestore is

selected if the consumption data are necessary to

integrate with other remote data resources, like

geographic and weather information systems. In

the case of a semi-structured data model, XML

serves well and it is usually used to store and

exchange information of configuration for

different systems. Second, an integrated system

was not the main goal at the time the database

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

56

systems were built [3]. Third, energy database

systems that differ from each other may be caused

by changes in technology. Last but not the least, in

contemporary urban environments and at a

household level, energy management requires that

the design of systems be able to integrate remote

and spatially distributed monitoring data while

being open, low cost, easy to use and flexible [5].

All these characteristics indeed set barriers to

getting accurate energy information in a global

perspective. Only using the existing tools cannot

solve these problems.

Nowadays, the increasing globalization has

encouraged waves of mergers and acquisitions,

presenting new difficulties for companies to

handle huge amounts of complex and disparate

information across regions [6]. Simply exchanging

basic information today may involve accessing

and interpreting a wide variety of formats, data

language, data models, and protocols that go

beyond just text. To achieve coordination of

diverse computerized operations, it is necessary

for a company to have database systems that can

operate over a distributed network and can

encompass a heterogeneous mix of hardware,

operating systems, local database management

systems and even data models for different

databases. Consequently, integrating and querying

data from heterogeneous sources has become a hot

research topic among information researchers. In

general, there are two possible approaches to the

architecture of a heterogeneous distributed

database: namely warehouse approach (e.g., [7])

and federated approach (e.g., [8]). The separation

is sometimes called centralized and decentralized

systems. The first method typically provides a

uniform interface to materialize the integrated

view. The latter approach, on the other hand, is a

form of virtual integration – the data are brought

together as needed [9]. In this study we focus on

the federated approach, as under this architecture

local databases can continue their local operations

and transactions without changing the features of

local databases; but at the same time participate in

the federation. Therefore, this approach is more

stable and reliable in our case.

The burgeoning semantic web technology has

provided new methods for integration of

heterogeneous distributed database management

systems. According to Tim Berners-Lee et al. [10],

the Semantic Web "provides a common

framework that allows data to be shared and

reused across application, enterprise, and

community boundaries." While rapidly evolving,

it is only recently that semantic web technologies

are becoming available and stable, and practical

solutions emerge and flourish in many fields. The

idea involves the concept of Linked Data, which

aims at enabling the same kind of possibilities for

data, as well as creating a universal medium for

exchanging information based on the meaning of

content on the Web [11] in a way that is usable

directly by machines. Resource Description

Framework (RDF) is a general language to

describe resources, especially on the web, and

SPARQL is a query language for RDF that can

join data from different databases, as well as

documents, inference engines, or anything else

that might express its knowledge as a directed

labeled graph [12].

To this end, we proposed a uniform approach for

SPARQL querying a heterogeneous distributed

database system in energy data management. This

federated method provides transparent query

access to multiple heterogeneous data sources,

including relational database, Triplestore, NoSQL

database and XML, thus realizing the process data

acquisition and integration without the necessity to

rewrite or transform the local data. Most extant

studies in heterogeneous distributed database

systems only consider a single language (e.g., [3])

or only focus on relational data (e.g., [12]). Our

approach is different from them in two ways: on

one hand, we do not only look at one specific

database model (e.g., relational database), but also

provide solutions to integrate other database

models. On the other hand, our mediator server

does not require local databases to translate or

transfer to a unified language; instead, all local

sources remain at the original level thus it has cost

advantages. Moreover, our solution fulfills the

energy information calculation from the integrated

data: e.g., daily, monthly, quarterly, etc.

This study aims to provide a better understanding

for a heterogeneous distributed database system in

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

57

energy data management. More precisely, it

contributes by:

(1) Proposing architecture for SPARQL

querying a heterogeneous distributed

database system. This system includes

multiple heterogeneous data sources, such as

relational database, Triplestore, NoSQL

database and XML.

(2) Implementing the system according to the

proposed approach by using semantic

technologies. It also performs query

optimization to speed search executions.

(3) Testing the proposed approach by a real case

in energy sector in Switzerland.

(4) Designing and developing the system based

on a mobile HTML5 platform. The use case

gives a complete implementation of the

mobile supported environment in which

users are assisted about the energy

consumption with the mobile application.

The remainder of this paper is structured as

follows: we start with a discussion of related work

in Section 2. Section 3 describes the architecture

for a heterogeneous distributed database system,

which consists of four layers, namely distributed

data layer, RDF wrapper layer, mediator layer and

user interface layer. Section 4 discusses the

mediator layer implementation. The case study

based on a Swiss energy company and a mobile

application based on our architecture is presented

in Section 5. Section 6 provides an evaluation and

discussion of our solution. We conclude with a

description of ongoing and future work in Section

7.

2 LITERATURE REVIEW

2.1 Energy Information System

Many information technologies have been

introduced in managing energy information. As a

result, a number of energy information systems

have been proposed and used to monitor the

sources of energy cost by identifying the energy

consumption, then providing further analysis, and

finally achieving energy effectiveness and

efficiency (e.g., [13]; [14]; [2]), both on the

industrial level (e.g., [15]; [1]) and resident level

(e.g., [2]). For example, the building sector is

reported as responsible for 40% of the total

European energy consumption and 36% of the

European Union’s total CO2 emission [16]. But at

the same time, it offers technological opportunities

to improve energy efficiency and greenhouse gas

emission. Accordingly, a number of researches

have been conducted. For example, [17]

established an integrated control system to

optimize energy consumption and user comfort in

buildings, [18] investigated and proposed a central

control management system to optimize of electric

energy consumption operating costs in cooling

technique, and [13] developed a system to monitor

building energy consumption for large public and

governmental buildings. The network layer adopts

the RS485 protocol, though it was argued by [1]

that the RS485 has “too many limitations to be

adopted in the multiple information or process

control systems” (p. 489).

However, as energy information is rather diverse

and consequently leads to different information

systems, along with rapid development of

information technologies, the information system

in the energy sector has become increasingly

complicated. In fact, the systems used are rather

independent and heterogeneous, resulting in an

“information island” and making it difficult to get

accurate and transparent energy information

quickly [1]. In the next session, we will briefly

discuss the characteristics of heterogeneous

distributed database system.

2.2 Heterogeneous Distributed Database

System

Data discovery, date mining, and date integration

have been important research topics in the field of

heterogeneous distributed database management

systems for years. Two possible approaches are

briefly described as follows:

The warehouse and RDFizer [19] approaches

usually consolidate data from multiple sources.

The advantages of this method are the high

efficiency and the capability of extracting deeper

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

58

information for decision making [1]. However, the

warehouse database must set up the “data

cleansing” and “data standardized” areas before its

actual use. Overlapping and inconsistent

information may exist among local sources; thus,

it must be cleansed. Moreover, each local database

may adopt different models from the warehouse’s

(e.g., schema, data type); thus, local sources need

to be reshaped and transformed into a common

one, that is, “data standardized”. As a

consequence, it typically would take months of

planning and effort to create [9].

In contrast, the federated approach provides a

single interface to many underlying data sources

without the user explicitly specifying the target

data source in the query. The advantages of data

federation are the high adaptability to frequent

changes of data sources, and the support of large

numbers of data sources and data sources with

high heterogeneity [1].

A large of variety of federated queries has been

proposed recently for heterogeneous distributed

databases (e.g., [20]; [21]). SPARQL, as a query

language for RDF, has been well accepted to

support querying of multiple RDF databases. It

aims to find matching resources from a graph-like

connected web for the database community [22].

For example, both [23] and [24] described the

approaches for SPARQL queries over a catalogue

of remote endpoints from multiple distributed

relational databases. Moreover [25] introduced a

SPARQL query mechanism for mapping relational

databases to an ontologies approach. Contrary to

other approaches, they took the complete schema

of the database into account, creating a database

specific ontology. To the best of our knowledge,

no existing research addresses SPARQL federated

query to support a heterogeneous distributed

database system including the most current and

popular databases, such as relational, Triplestore,

NOSQL, and XML. It provides transparent query

access over mapped RDF data sources. Our

approach offers a standard SPARQL query

interface to retrieve the desired distributed data in

RDF format.

Most studies on SPARQL query optimization for a

heterogeneous distributed database system include

two aspects: minimizing communication cost and

optimizing execution localization. According to

[26], communication cost is reflected in the

number of contacted data sources. It directly

influences the performance of the query execution

due to the communication overhead. The approach

of query rewriting identifies the complex elements

and proposes specific rewriting rules; therefore, it

could be used to resolve the cost of

communication among different databases ([27];

[28]; [29]). From [26] point of view, optimizing

execution localization is represented by

identifying optimal index structure and join

ordering in order to execute queries in parallel and

reduce query execution time. However, there is

still little discussion of SPARQL query

optimization across multiple heterogeneous

databases. We aim to fill this research gap.

3 ARCHITECTURE OF

HETEROGENEOUS DISTRIBUTED

DATABASE SYSTEM

In this section, we first present a global view of

our architecture; then, we will introduce in detail

each component in the heterogeneous distributed

database system for energy management.

The architecture, as shown in Figure 1, contains

four principal layers. The first layer includes

users’ interfaces on mobile devices and in it, user

could send one or multiple queries via mobile

interfaces to the Mediator layer. The mediator is

on the second layer of our architecture. It is a

middleware system containing a global schema

that describes the data throughout the network,

and it is used to support and coordinate the

distributed transaction management. The mediator

is designed to integrate any kind of component

database. Four important components are stored in

this layer: Query Parser, Distributed Query

Decomposer, Query Optimizer, and Transaction

Coordinator. Once a user’s query is received by

the mediator, the query will be scanned and parsed

into a graph structure of SPARQL. If no error is

found, the generated transactions corresponding to

the query are sent to the Distributed Query

Decomposer, which can interpret the query

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

59

Figure 1. The architecture of heterogeneous distributed database system

received from the user’s interface and generates a

distributed query context containing several

transactions and their associations (i.e., joins) [30].

Then, Query Optimizer takes all distributed

transactions, and generates optimal sub-queries to

build an optimal SPARQL query execution plan.

The optimization of such sub-queries is a key

factor concerning the performance of the overall

system. For each distributed transaction, the

Distributed Transaction Coordinator looks up the

corresponding distributed database schema at

which the accessed relation of the transaction

resides from the definition of endpoint addresses.

However, SPARQL queries require an explicit

definition of endpoint URIs. Our system allows

execution of queries without the necessity to

specify target remote endpoints. After that, the

Transaction Coordinator generates the navigation

information in the form of SPARQL for all sub-

transactions according to the associations among

them, and sends then separately to the related

heterogonous database server. The third layer of

our architecture contains four different RDF

wrappers such as D2RQ [31], SPARQL endpoint,

SPARQL2XQUERY [32] and SPARQLverse

[33]. These free and open RDF wrappers exactly

corresponding four heterogeneous databases in the

fourth layer - distributed database layer: relational

database, Semantic Web Triplestore, XML, and

NOSQL database. In order to encapsulate the

details of component databases, these RDF

wrappers are associated and placed on the top of

distributed database layer. Therefore, when a

SPARQL query arrives at the heterogonous

distributed database servers, the query does not

directly refer to distributed database. Instead, it

contains graph patterns adhering to a virtual RDF

data set. In addition, RDF wrappers also

participate in query optimization. Then, the

corresponding RDF wrapper generates the

SPARQL query into a local query to the local

schema DBMS. The execution result of the local

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

60

transaction is returned back to the same wrapper

and then, the local result is converted to a uniform

format (e.g., XML or JSON) and is collected by

the Mediator layer. Finally, the client receives the

global results in the form of HTML5 on their

mobile phone’s interfaces.

Now, we will present each component in our

architecture in details as follows:

3.1 Query Parser

Query parser is used to scan and parse query

statements to check syntactic errors, such as query

references, names of relations, and attributes.

3.2 Distributed Query Decomposer

Distributed query decomposer generates a number

of transactions to match the underlying remote

data sources. These distributed transactions are

submitted and executed in parallel with

heterogeneous databases over remote connections.

Moreover, the distributed query decomposer

assembles transaction results and returns a final

result to the end user.

3.3 Query Optimizer

SPARQL query optimizer in mediator layer

provides an approach of the query execution plan

to minimize the communication and processing

costs to transmit query and result between

mediator and heterogeneous distributed databases.

In fact, the join order has a significant influence

on the cost-effective query execution plan.

Therefore, the join order optimization is usually

the main focus of SPARQL query optimization. In

our architecture, we proposed two steps for query

optimization, namely data source optimization and

join order optimization.

The data source optimization is represented by the

precision of the data source selection and building

sub-queries. The idea is to determine all return

results from different data sources. Specifically,

the data source selection would identify whether

the return result to the SPARQL query is empty

and which data source does not need to be

accessed. Therefore, we send SPARQL ASK

queries [34] including the triple pattern to all the

federation databases and eliminate sources that fail

to match the pattern. This refining of data sources

is more efficient than accepting no results in

regular SPARQL SELECT queries. The results

from source selection are then used to build sub-

queries. Each sub-query contains triple elements:

triple patterns, value constraints and data source

that can answer the sub-query. One sub-query

could be matched to one or multiple data sources.

The join order optimization is implemented in our

solution to determine the numbers of intermediate

results, since all query execution plans for

heterogeneous distributed databases are based on

the sub-queries generated by the data source

selection. It is possible to use sub-queries joining

larger result sets in a nested loop join after the

smaller result set has been received completely.

This mode of join order is called “Mediator Join”

[26]. It executes the joins in the mediator after

comparing the intermediate result sets from the

data sources, and only the smaller results set will

be returned to the mediator. This approach of join

order is used in our query optimizer to deal with

large result sets and it will drastically reduce the

transfer costs.

3.4 Distributed Transaction Coordinator

A distributed transaction coordinator is used in our

architecture to manager optimal distributed sub-

transactions. It detects and handles persistent

records of the transactions, and manages the

communications with the databases.

3.5 SPARQL Endpoint

A SPARQL endpoint allows users to query a

machine-friendly interface towards a knowledge

base such as triple store via the SPARQL

language. The results are returned in machine-

processable formats, like XML and JSON. In our

case, the four different RDF Wrappers in the

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

61

distributed database server could be considered as

four SPARQL endpoints.

3.6 Mapping Relational Data to RDF

There are existing approaches for mapping

relational data to RDF, such as Triply [35], R2O

[36], and RDBToOnto [37]. In this study, we

chose the approach of D2R to ease integration of

our relational database and discover information

without replicating the data into a dedicated RDF

triple store. The D2R server uses D2RD mapping

language to provide an automated process to

generate the mapping file between specific

relational database schemas and RDF schemas.

This mapping file convers all tables from

relational database to RDF classes, and it is used

to identify resources, as well as access and

generate property values into RDF format from

database content.

The D2R server allows applications to query

relational databases using SPARQL query

language through the SPARQL protocol. Once the

SPARQL requests arrive from the mediator, they

are rewritten into SQL queries via the mapping

and executed against a D2RQ-mapped relational

database. Finally, the query results will be

represented in XML and JSON formats and

integrated into global results.

3.7 Mapping NOSQL Data to RDF

Several studies have been conducted of NOSQL

databases and relational databases in the past

couple of years. However, these studies focused

mainly on the conversion between these two

formats and which type of database is more

effective and optimized for specific database

management issues. Until now, little attention has

been paid to the integration of NOSQL data and

RDF. SPARQLverse is one of few tools that could

help map NOSQL data to RDF. SPARQLverse is

developed to meet W3C standards for the

RDF/SPARQL 1.1; therefore, it could be used as

an RDF database. In fact, SPARQLverse is an in-

memory triplestore that provides the ability to

connect to NOSQL databases such as MongoDB

for data storage. Similar to D2R for relational

databases, the SPARQLverse server provides an

automatic mapping mechanism and it allows query

graph style linked data and document-based data

in MongoDB by using SPARQL. This mapping

mechanism provides a “read-only” mode for the

database content; thus, any request of adding,

updating, and deleting from the user will not

change any data in MongoDB. When a SPARQL

request is sent to the SPARQLverse, the leader

node dedicates a set of threads to process the

request in parallel. Before sending the stream and

starting processing, three steps are executed: (1)

parse the initial query tree for the planner; (2) plan

the steps for the query requirements; (3) generate

all the segments for the query into a stream.

Finally, the nodes return the results in JSON

formats.

3.8 Mapping XML Data to RDF

XML has been widely successful for configuration

information storage and information exchange on

the Web. XML defines a set of rules to describe

the content of structured and unstructured

documents in a format that is both human-readable

and machine-readable [38]. Several research

works have clearly observed striking similarities

between semi-structured data models and XML

([39]; [40]). These similarities are reflected in

their irregular or often changing structure, as well

as different attributes for different entities

represented in a model that is often based on using

tree or graph data structures.

A number of combinations of Semantic Web and

XML technologies have been exploited. However,

the objectives of these research works (e.g., [41];

[42]) only focus on data transformation from

XML to RDF. SPARQL2XQuery represented a

comprehensive framework that allows expressing

semantic queries on top of XML data through the

translation of SPARQL queries in XQuery syntax.

SPARQL2XQuery proposed two types of

scenarios to query CML data by using SPARQL.

The first scenario is based on an automatically

generated mapping ontology, and the second is

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

62

based on an existing OWL ontology. In our

framework, the first scenario is matched and used

to generate the mappings between the ontology

and the XML schema automatically, as well as to

integrate and query the XML data from the

Sematic Web environment. The query results are

transformed into the desired formats (such as

XML or RDF) and returned to the mediator layer.

4 MEDIATOR LAYER IMPLEMENTATION

Once the heterogeneous systems (distributed

database layer) and their SPARQL endpoints are

set up (RDF wrapper layer), the mediator layer

provides a uniform way to query those different

endpoints with SPARQL.

To manipulate RDF data, semantic web toolkits

exist for most programming languages (e.g. C++,

Java, PHP, Python). Developers in the Java world

have been very active in this field since the early

days of RDF. They provide, amongst others, two

famous frameworks called Jena [43] and Sesame

[44], both of which support interaction with most

of the currently available triplestores. According

to [45], Jena offers faster load times and better

scale, but provides worse query performance than

Sesame. Because our study focused more on query

performance, we decided to build our architecture

on Sesame.

In our distributed system, we rely on the

SERVICE extension. It has become a

recommendation of SPARQL 1.1 federated query

[46] since 2013. This extension allows us to direct

a portion of a predefined query to a specific

SPARQL endpoint. Therefore, we can write

queries that request data from different databases

through their RDF wrappers. The URL of the

wrapper is the endpoint specified for the

SERVICE:

SELECT * WHERE {

?building a musyopOnto:Building;

musyopOnto:hasID ?buildingID ;

SERVICE <http://d2r_server/sparql> {

?reading a db_vocab:readings;

db_vocab:reading_building_id ?buildingID

}}

The query shown above described how data can be

merged from two sources: a building (?building)

and its identifier (?buildingID) queried from the
triple store, whereas the readings about this

building (energy consumptions captor’s readings)

are queried from the relational database.

The example further illustrates the D2RQ mapping

between the database tables and the RDF

representation. Such mapping would tell D2R to

translate the SPARQL query to SQL by matching

the underlying table through the predefined

db_vocab:readings mapping.

Moreover, to effectively handle the combination

of result sets (as SQL joins) in this context of

distributed but interdependent data sources, the

solution makes good use of the VALUES keyword

that allows filtering results by providing a table

with values. It is thus possible to restrict the scope

of subsequent sub-queries according to the results

of previous ones, even though the results are

directed to different endpoints.

5. CASE STUDY: ENERGY DATA

MANAGEMENT IN SWITZERLAND

5.1 Overview of Energy Management in

Switzerland

Swiss energy production is dominated by hydro

power (56%) and nuclear energy (39%). This

country consumed more than 61800 gigawatt

hours of electricity and produced a net total of

63900 gigawatt hours. Because the energy sector’s

requirements for information system are diverse

and information technology is developing rapidly,

discussion about only one database is not enough,

and the heterogeneous system is a must. Our

solution aimed at offering as heterogeneous

distributed system that can manage energy data in

a rational and efficient manner but keep the cost at

a relatively low level.

5.2 Case Study

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

63

Figure 2. Case study with the related databases

To test the performance of our architecture, we

designed and implemented a real case regarding

energy data management. The case is based on

issues that a Swiss energy company is currently

facing. By using its real-time databases of

electronic and gas consumption for a number of

residents, our case study will illustrate the

capability of our heterogeneous distributed

database system to retrieve information from

energy consumption in the optimization of data

flow.

The existing databases include four different types

of energy data that have been stored into four

different databases in the distributed system

according to their features. For instance, the real-

time frequent energy data of consumption (e.g.

minutely, secondly) is stored in MongoDB,

because MongoDB fits very well to convert and

store a large body of non-relational data. Users’

notification settings are stored in XML files. The

information related to geography, buildings, and

weather is stored in Triplestore because the

semantic data is easier to integrate with other

remote resources on the Web. Moreover, the

ontologies like geonames and weather already

have been created and are widely used. Using

semantic data allows us to access existing

ontologies easily. All the aggregation energy data

from MongoDB have been stored in a MySQL

database to highlight the relationship between

energy consumptions and time periods, for

example, daily, monthly, and yearly consumption

data.

Our case study described on the gas consumption

in winter for all buildings in a given area. The

mobile phone will provide push notification

according to the gas usage. Suppose that the

command is: notify me and display all the

buildings below the altitude of 600 meters, when

the gas consumption in winter is 15% higher than

the previous years for the same month.

This command requires the system to access four

types of data. Therefore, to achieve the result, the

SPARQL query is developed and accessed four

different databases in our system. We can find

information about the user’s notification

configuration from an XML file. We can get the

information of building, geography, and weather,

from Triplestore. The detail of gas consumption

comes from MongoDB, and the monthly

aggregate energy data is from MySQL. Figure 2

shows the relationship between the request and the

concerning databases.

Different from using a specific query language for

each corresponding database, only semantic RDF

query language SPARQL is used in our case

study. The advantages of this method are more

efficiency and rapid data management. In addition,

it does not change the original data sources from

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

64

the local databases. The following SPARQL

scripts are used to get the results:

PREFIX db_vocab:

<http://d2r_server/resource/vocab/>

prefix musyopOnto:

<http://www.websematique.ch/voc/musyop#>

prefix dbp-ont:

<http://dbpedia.org/ontology/>

prefix xsd:

<http://www.w3.org/2001/XMLSchema#>

select ?managerID ?buildingID

?buildingLabel ?readingID ?cons1 ?cons2

?consDiff ?city ?elevation

{

SERVICE <http://d2r_server/sparql> {

?reading a db_vocab:readings;

db_vocab:reading_affectation "Gaz";

db_vocab:reading_building_id ?buildingID

;

db_vocab:reading_id ?readingID.

?monthlyData2011

db_vocab:monthly_data_reading ?reading;

db_vocab:monthly_data_timestamp "2011-

01-01T00:00:00"^^xsd:dateTime;

db_vocab:monthly_data_consumption

?cons1.

?monthlyData2012

db_vocab:monthly_data_reading ?reading;

db_vocab:monthly_data_timestamp "2012-

01-01T00:00:00"^^xsd:dateTime;

db_vocab:monthly_data_consumption

?cons2.

?buildingUser rdf:type

db_vocab:building_user;

db_vocab:building_user_building_id

?buildingID;

db_vocab:building_user_utilisateur_id

?managerID;

}

?building a musyopOnto:Building;

musyopOnto:hasID ?buildingID ;

rdfs:label ?buildingLabel;

musyopOnto:locatedIn ?city.

?city dbp-ont:elevation ?elevation.

Filter(?elevation < ?paramElevationMax)

BIND((xsd:double(?cons2)/xsd:double(?con

s1)) as ?consDiff).

Filter(?consDiff > ?paramConsDiffMax)

}

ORDER BY ?buildingID ?managerID

limit 100

VALUES (?managerID) { MANAGERID_VALUES }

Finally, results are returned to the user, including a

short description of the issue, the name of the

building, date and time. These results can be

displayed on the user’s mobile device’s screen and

users also can be notified by SMS and email.

5.3 Design and Development of Mobile

Application

We implemented a mobile application according

to the case study discussed earlier. The overall

goal in designing this application is to examine the

feasibility of our approach and to test the

performance of our heterogeneous distributed

database system with real-time energy data.

This mobile application is developed in HTML5

and PHP. It includes a cross-platform framework

called jQuery Mobile [47]. Instead of writing

unique applications for each mobile device’s

operating system, such as iOS, Android, or

Windows Phone, the jQuery mobile framework

allows us to design a single highly-branded

responsive web application that will work on all

popular smartphones. The XML files store all

settings for the user’s configuration. By using the

PHP and Java Bridge library [48], we can

facilitate the process to connect the online web

services to get the final query results from our

server.

Our application contains five main functions: (1)

configure notification settings, (2) set the active

alarms, (3) display all acquitted alarms, (4)

manually send a new alarm, and (5) check new

alarms from our servers.

The user’s notification configuration uses the

XML files to store user’s settings. As shown on

the first interface in Figure 3, the user can select

one or more notifications according to his or her

preferences. These notifications correspond to the

different situations. Once the user receives a

notification, he or she could acquit the alarm if the

problem has been solved (refer to the second

interface in Figure 3). Therefore, all users relevant

to this alarm will receive an acquit notification.

Moreover, the user can find all the acquitted

alarms with detailed information, including the

date and time of alarm creation and acquisition, as

well as the name of user who acquitted the alarm

from a history list (refer to the third interface in

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

65

Figure 3. Interface of notifications configuration, active alarms, and acquitted alarms

Figure 3).

There are two channels to send new alarms to

users. The first is done manually by the energy

consumption manager (refer to the first interface

in Figure 4). The manager can describe a new

alarm and select one or several users to send.

Different users have different levels of access for

our application. For example, the new alarm

setting can be done only by the energy manager.

The doorkeeper of a building, on the other hand,

can only receive alarms. The second channel is

automatically done by our remote servers with

corresponding users’ configurations (refer to the

second interface in Figure 4). This function would

check all new alarms from four different

distributed databases through the online web

services. The user will then receive the

notifications in forms of SMS and email, as

described on the third interface in Figure 4. In

addition, the user could click the link on the

notification message to access the mobile

application on the phone with the username and

password.

Figure 4. Interface of send new alarm, check new alarms, and acquitted alarms

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

66

6 EVALUATION AND DISCUSSION

A first evaluation has been done with a small

group of academic and industry experts of energy

and database management to whom the

architecture has been presented. The structure and

methodologies of architecture implementation

have been accepted. Feedback in general is quite

positive, although some suggestions about the

design of user interfaces on mobile phone devices

are offered.

A second evaluation of the mobile application

related case study has been done with a group of

mobile users from different functions, including

an energy manager, technicians, computer

developers, and building concierges. We

conducted this usability test of our mobile

application by using the real energy database

based on a closed system in a private energy data

management enterprise in Switzerland. This

evaluation would not only test the feasibility of

our whole system, but more importantly, it also

would perform a benchmark with existing

solutions, including the SPARQL query and

storage system performance. In our study, the

energy manager was first asked to access the

mobile application with a browser on his mobile

phone. He then checked new alarms from different

remote servers. After that, all push notifications

were sent to the mobile devices of related building

concierges and technicians. Once the energy

problem was resolved by any user, an acquitted

confirmation alarm could be sent by this user to

other users, informing them that the problem was

solved.

The results revealed that most users claimed they

liked this mobile application, and they found it

very useful compare to existing solutions, such as

computer and telephone call. They expressed their

intention to use the application for their daily work

in the future, because it was more efficient and

ease to use. The energy manager and computer

developers clearly expressed that the performance

of the new heterogeneous distributed database

system was better than their existing energy data

management solution (e.g., depends solely on

relational database).

7 CONCLUSION AND FUTURE

RESEARCH

This paper described the architecture of a

heterogeneous distributed database system.

Contrary to other studies, we proposed a mediator

server, a middleware that contains a global schema

throughout the network and is used to support and

coordinate the distributed transaction

management. Based on this mediator, we showed

how to query data among four widely used data

sources, including relational database, Triplestore,

NoSQL database, and XML. With this approach,

the system can integrate any kind of component

database and it does not require any changes to

local databases. We also proposed an approach for

query optimization based on our architecture.

Moreover, we implemented our solution in a real

example in a Swiss energy company and evaluated

its performance. We found positive feedback from

key person for the distributed data system based

on our new architecture. Furthermore, we created

and developed a mobile application in HTML5

and PHP based on our solution. This application

can successfully provide push notifications about

the energy consumption for corresponding users.

In the near future, we plan to experiment to further

enhance the flexibility and optimize the query to

speedily retrieve data. We also intend to optimize

four RDF wrappers in our architecture to improve

performance of the whole system.

8 ACKNOWLEDGEMENTS

Financial support for this study was provided by

the University of Applied Sciences and Arts

Western Switzerland (HES-SO) under grant

number 34930, the name of the project is

MUSYOP. The authors thank professors

Alexandre Cotting and Fabrice Chapuis for their

works on implementing the distributed system.

We also thank professor Arnaud Zufferey and

Frédéric Revaz for their suggestions on the case

study of energy data management.

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

67

9 REFERENCES

1. Wu, B., Li, J., Liu, H., Zhang, Z., Zhou, Y., and Zhao,

N.: Energy Information Integration based on EMS in

Paper Mill. Applied Energy 93, 488--495 (2012).

2. Ueno, T., Sano, F., Saeki, O, and Tsuji, K.: Effectivenss

of an energy-consumption information system on

energy saving in residential houses based on monitored

data. Applied Energy 83(2), 166--183 (2006).

3. Smith, J. M., Bernstein, P. A., Dayal, U., Goodman, N.,

Landers, T., Lin, K. W. T., and Wong, E.: Mutibase -

Integrating Heterogeneous Distributed Database

Systems. In: Proc. AFIPS of the National Computer

Conference, pp.487--499, Chicago, USA (1981).

4. 10gen, Inc.: MongoDB documentation (2012).

5. Karatzas, K., Papadopoulos, A., Moussiopoulos, N.,

Kalognomou, E. A., and Bassoukos, A.: Development

of a Hierarchical System for the Tele-transmission of

Environmental and Energy Data. Telematics and

Informatics 17, 239--249 (2000).

6. Giacomazzi, F., Panella, C., Pernici, B. and Sansoni,

M.: Information systems integration in mergers and

acquisitions: A normative model. Information and

Management 32(6), 289--302 (1997).

7. Chaudhuri, S., and Dayal, U.: An Overview of Data

Warehousing and OLAP Technology. ACM SIGMOD

Record 26(1), 65--74 (1999).

8. Sheth, A. P., and Larson, J. A.: Federated Database

Systems for managing Distributed Heterogeneous, and

Autonomous Databases. ACM computing Surveys

22(3), 183--236 (1990).

9. Haas, L. M, and Soffer A.: New Challenges in

Information Integration. In: DaWak 2009, Data

Warehousing and Knowledge Discovery, Pedersen, T.,

Mohania, M., Tjoa, A. (eds.) pp. 1--8. Springer,

Heidelberg (2009).

10. Berners-Lee, T., James, H., and Ora L.: The Semantic

Web. Scientific American Magazine (2001).

11. Theocharis, S. A., and Tsihrintzis, G. A.: Semantic Web

Technologies in e-Government. World Academy of

Science, Engineering and Technology 64, 1237--1244

(2012).

12. Wang, J., Miao, Z., Zhang, Y., and Zhou, B.: Querying

Heterogeneous Relational Database Using SPARQL. In:

Proc. Eighth IEEE/ACIS International Conference on

Computer and Information Science, pp.475--480 (2009).

13. Chen, Y., Mu, X., Zhang, J., and Lu, Z.: Development

of monitoring system of building energy consumption.

In: Proc. International Forum on Computer Science-

Technology and Applications, vol. 2, pp. 363--366,

IEEE Computer Society (2009).

14. Haberl, J., Sparks, R., and Culp, C.: Exploring new

techniques for displaying complex building energy

consumption data. Energy and Building 24, 27--38

(1996).

15. Qiu, D., Zhang, D.: The research and realization of

energy management system in iron and steel. In: Proc.

International Conference on Information Networking

and Automation, vol. 1, pp. 448--451 (2010).

16. European Commission: Energy-efficient buildings:

Challenges ahead (2013),

http://ec.europa.eu/research/industrial_technologies/eeb-

challenges-ahead_en.html

17. Pargfrieder, J., Jorgl, H.P.: An integrated control system

for optimizing the energy consumption and user comfort

in buildings. In: Proc. of Computer Aided Control

System Design, pp.127--132 (2002).

18. Vidrih, S., Umberger, M., Humar, I.: Optimization of

electric energy consumption operating costs in cooling

technique by establishing a remote central control

system, exploiting thermal capacity and load shifting. In

In: Proc. of Eurocon, pp.1479--1484 (2013).

19. Mazzocchi, S., Garland, S., and Lee, R.: Simile:

Practical metadata for the semantic web. XML.com

(2006).

20. Josifovski, V., Schwarz, P., Haas, L., and Lin. E.:

Garlic: A New Flavor of Federated Query Processing

for DB2. In: Proc. the 2002 ACM SIGMOD

International Conference on Management of Data, pp.

524--532, Madison, Wisconsin (2002).

21. Schenk, S., Saathoff, C., Staab, S., and Scherp, A.:

SemaPlorer – Interactive Semantic Exploration of Data

and Media based on a Federated Cloud Infrastructure.

Journal on Web Semantics: Science, Services and

Agents on the World Wide Web 7(4), 298--304 (2009).

22. Arenas, M., and Pérez, J.: Querying Semantic Web data

with SPARQL. In: Proc. Principles of Database

Systems, ACM, pp. 305--316 (2011).

23. Langegger, A., Wöß, W., and Blöchl, M.: A Semantic

Web Middleware for Virtual Data Integration on the

Web. In: Proc. 5th European semantic web conference

on the semantic web: research and applications, pp. 493-

-507, Springer Berlin, Heidelberg (2008).

24. Chen H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou,

C., Yin, A., and Wu, Z.: Towards a semantic web of

relational databases: a practical semantic toolkit and an

in-use case from traditional chinese medicine. In: Proc.

4th International Semantic Web Conference (ISWC),

LNCS, pp. 750--763, Springer-Verlag, Athens, USA

(2006).

25. de Laborda, C. P., and Conrad, S.: Bringing Relational

Data into the SemanticWeb using SPARQL and

Relational OWL. In: Proc. 22nd International

Conference on Data Engineering Workshops

(ICDEW'06), pp. 55 (2006).

26. Gorlitz, O., and Staab, S.: Federated Data Management

and Query Optimization for Linked Open Data. New

Directions in Web Data Management, Springer, pp.

109--137 (2011).

27. Hartig, O., and Heese, R.: The sparql query graph model

for query optimization. In: Proc. 4th European Semantic

Web Conference (ESWC), pp. 564--578 (2007).

28. Kossmann, D.: The State of the Art in Distributed

Query Processing. ACM Computing Surveys 32(4),

422--469 (2000).

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

68

29. Schmidt, M., Meier, M., and Lausen, G.: Foundations of

SPARQL query optimization. In: Proc. 12th

International Conference on Database Theory, pp. 4--33

(2008).

30. Yeh, D. Y., Lee, M. C., and Wang, T. I.: Mobile Agents

for Distributed Transactions of a Distributed

Heterogeneous Database System. In: Proc. 13th

International Conference on Database and Expert

Systems Applications (DEXA 2002), pp. 403--412, Aix-

en-Provence, France (2002).

31. Bizer, C., and Seaborne, A.: D2rq: Treating non-rdf

databases as virtual rdf graphs. In: Proc. 3rd

International Semantic Web Conference (ISWC2004

posters) (2004).

32. Stavrakantonakis, I., Tsinaraki, C., Bikakis, N.,

Gioldasis, N., and Christodoulakis, S.: Sparql2xquery

2.0: Supporting semantic-based queries over xml data.

In: Proc. 5th Semantic Media Adaptation and

Personalization (SMAP), pp. 76--84, IEEE (2010).

33. SPARQLverse (2014),

http://sparqlvillage.org/documentation/

34. Schwarte, A., Haase, P., Hose, K., Schenkel, R., and

Schmidt, M.: FedX: Optimization Techniques for

Federated Query Processing on Linked Data. In: Proc.

10th International Semantic Web Conference, pp. 481--

486, Bonn, Germany (2011).

35. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., and

Aumueller, D.: Triplify – Light-Weight Linked Data

Publication from Relational Databases. In: Proc. 18th

World Wide Web Conference, pp. 621--630, Madrid,

Spain (2009).

36. Rodriguez, J.B., and Gomez-Perez, A.: Upgrading

relational legacy data to the semantic web. In: Proc.

15th international conference on World Wide Web, pp.

1069--1070, Edinburgh, Scotland (2006).

37. Cerbah, F.: Learning highly structured semantic

repositories from relational databases: the RDBToOnto

tool. In: Proc. 5th European semantic web conference

on The semantic web: research and applications, pp.

777--781, Tenerife, Canary Islands, Spain (2008).

38. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler,

E., and Yergeau, F.: Extensible Markup Language

(XML) 1.0 (Fifth Edition). World Wide Web

Consortium, Recommendation REC-xml-20081126

(2008).

39. Goldman, R., McHugh, J., and Widom, J.: From

semistructured data to XML: Migrating the Lore data

model and query language. In: Proc. ACM SIGMOD

WebDB Workshop, pp. 25--30 (1999).

40. Suciu, D.: Semistructured data and XML. Information

organization and databases, pp. 9--30, Springer US

(2000).

41. Droop, M., Flarer, M, , Groppe, J., Groppe, S.,

Linnemann, V., Pinggera, J., Santner, F., Schier, M.,

Schopf, F., Staffler, H. and Zugal, S.: Embedding

XPATH Queries into SPARQL Queries. In: Proc. 10th

International Conference on Enterprise Information

Systems (ICEIS), pp. 5--14 (2008).

42. Akhtar, W., Kopecky, J., Krennwallner, T. and Polleres,

A.: XSPARQL: Traveling be-tween the XML and RDF

Worlds and Avoiding the XSLT Pilgrimage. In: Proc.

5th European Semantic Web Conference, ESWC 2008,

pp. 432--447, Tenerife, Canary Islands, Spain (2008).

43. McBride, B.: Jena: A semantic web toolkit. IEEE

Internet computing 6(6), 55--59 (2002).

44. Broekstra, J., Kampman, A., and Van Harmelen, F.:

Sesame: A generic architecture for storing and querying

rdf and rdf schema. In: Proc. the Semantic Web-ISWC

2002, pp. 54--68, Springer Berlin Heidelberg (2002).

45. Bizer, C., and Schultz, A.: The Berlin SPARQL

Benchmark. International Journal on Semantic Web &

Information Systems 5(2), 1--24 (2009).

46. SPARQL 1.1 Federated Query (2013):

http://www.w3.org/TR/sparql11-federated-query/

47. Charland, A., and Leroux, B.: Mobile application de-

velopment: web vs. native. Communications of the

ACM 54(5), 49--53 (2011).

48. PHP and Java bridge, http://php-java-

bridge.sourceforge.net/pjb/index.php

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(2): 56-69
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

69

http://www.w3.org/TR/sparql11-federated-query/
http://php-java-bridge.sourceforge.net/pjb/index.php
http://php-java-bridge.sourceforge.net/pjb/index.php

