

MUSYOP: Towards a Query Optimization for Heterogeneous Distributed Database

System in Energy Data Management

Zhan Liu
1
, Fabian Cretton

1
, Anne Le Calvé

1
, Nicole Glassey

1
, Alexandre Cotting

1
 and Fabrice Chapuis

2

1
Institute of Business Information Systems

University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland

{zhan.liu, fabian.cretton, anne.lecalve, nicole.glassey, alexandre.cotting}@hevs.ch
2
Institute of Business Information Systems

University of Applied Sciences Western Switzerland, Neuchâtel, Switzerland

fabrice.chapuis@he-arc.ch

ABSTRACT

The integration of data from multiple distributed and

heterogeneous sources has long been an important

issue in information system research. In this study, we

considered the query access and its optimization in

such an integration scenario in the context of energy

management by using SPARQL. Specifically, we

provided a federated approach - a mediator server - that

allows users to query access to multiple heterogeneous

data sources, including four typical types of databases

in energy data resources: relational database

Triplestore, NoSQL database, and XML. A MUSYOP

architecture based on this approach is then presented

and our solution can realize the process data

acquisition and integration without the need to rewrite

or transform the local data into a unified data.

KEYWORDS

Heterogeneous distributed database system, query

optimization, mediator, federation, semantic web,

database integration

1. INTRODUCTION

Information systems usually consist of multiple

database systems, which may be stored on

different computer systems, use different data

models, etc. it is also very common to find that

many of these databases contain overlapping and

inconsistent data. In fact, the real world of

databases is far from the ideal world of an

integrated database where all of the data relevant

to an organization would be stored and managed

in one single unified and integrated database.

Rather, databases are non-integrated, distributed

and heterogeneous [1]. This is especially evident

in the context of an energy database management

system that not only requires storage of massive

amounts of information every day, but also needs

to be integrated with existing data applications

like temperature management systems and a

geographic information system.

Today’s complex and increasingly globalized

world which has encouraged waves of mergers

and acquisitions, presents new difficulties for

companies as they have to continue to handle huge

amounts of complex and disparate information

across regions. Simply exchanging basic

information today may involve accessing and

interpreting a wide variety of formats, data

language, data models, and protocols that go

beyond just text. Consequently, information

integration is becoming increasing important and

it consumes “a great deal of time and money” for

large enterprises [2].

As a result, integrating and querying data from

heterogeneous sources has become a hot research

topic among information researchers. In general,

there are two possible approaches to the

architecture of a heterogeneous distributed

database: namely warehouse approach (e.g., [3])

and federated approach (e.g., [4]). The separation

is sometimes called centralized and decentralized

systems. The first method typically provides a

uniform interface to materialize the integrated

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 1

view. The latter approach, on the other hand, is a

form of virtual integration – the data are brought

together as needed [5]. In this study we focus on

the federated approach, as under this architecture

local databases can continue their local operations

and transactions without changing the features of

local databases; but at the same time participate in

the federation. Therefore, this approach is more

stable and reliable in our case.

Companies must systematically manage energy

use and handle as much energy information as

possible to get deep and quantitative knowledge of

the process of energy consumption [6]. As an

important part of information resource, energy

information resource supports energy efficiency

and influences the direction of future performance.

However, similar to other manufacturers, energy

companies also involve heterogeneous database

system problems due to several reasons. First and

foremost, an energy database management system

was built according to the characteristics of the

energy usage in a specific region. Thus, the

requirements are diverse and as a consequence,

database systems in the field of energy are rather

distributed and complicated. For example,

electricity consumption function requires its

information system to quickly convert and store a

large body of non-relational data; thus, a NoSQL

database like MongoDB [7] fits very well in this

case. However, in other functions where the data

are stable with low variability, and if such data are

related to data sources, a relational database

should be a good choice. Moreover, Triplestore is

selected if the consumption data are necessary to

integrate with other remote data resources, like

geographic and weather information systems. In

the case of a semi-structured data model, XML

serves well and it is usually used to store and

exchange information of configuration for

different systems. Second, an integrated system

was not the main goal at the time the database

systems were built [1]. Third, energy database

systems that differ from each other may be caused

by changes in technology. Last but not the least, in

contemporary urban environments and at a

household level, energy management requires that

the design of systems be able to integrate remote

and spatially distributed monitoring data while

being open, low cost, easy to use and flexible [8].

All these characteristics indeed set barriers to

getting accurate energy information in a global

perspective. Only using the existing tools cannot

solve these problems.

The burgeoning semantic web technology has

provided new methods for integration of

heterogeneous distributed database management

systems. According to Tim Berners-Lee et al. [9],

the Semantic Web "provides a common

framework that allows data to be shared and

reused across application, enterprise, and

community boundaries." While rapidly evolving,

it is only recently that semantic web technologies

are becoming available and stable, and practical

solutions emerge and flourish in many fields. The

idea involves the concept of Linked Data, which

aims at enabling the same kind of possibilities for

data, as well as creating a universal medium for

exchanging information based on the meaning of

content on the Web [10] in a way that is usable

directly by machines. Resource Description

Framework (RDF) is a general language to

describe resources, especially on the web, and

SPARQL is a query language for RDF that can

join data from different databases, as well as

documents, inference engines, or anything else

that might express its knowledge as a directed

labeled graph [11].

To this end, we proposed a uniform approach for

SPARQL querying a heterogeneous distributed

database system named MUSYOP. This federated

method provides transparent query access to

multiple heterogeneous data sources, including

relational database, Triplestore, NoSQL database

and XML, thus realizing the process data

acquisition and integration without the necessity to

rewrite or transform the local data. Most extant

studies in heterogeneous distributed database

systems only consider a single language (e.g., [1])

or only focus on relational data (e.g., [11]). Our

approach is different from them in two ways: on

one hand, we do not only look at one specific

database model (e.g., relational database), but also

provide solutions to integrate other database

models. On the other hand, our mediator server

does not require local databases to translate or

transfer to a unified language; rather, all local

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 2

sources remain at the original level thus it has cost

advantages. Moreover, our solution fulfills the

energy information calculation from the integrated

data: e.g., daily, monthly, quarterly, etc. In

addition, MUSYOP uses query optimization to

speed-up search executions.

The remainder of this paper is structured as

follows: we start with a discussion of related work

in Section 2. Section 3 describes the architecture

of MUSYOP for heterogeneous distributed

database system. We conclude with a description

of ongoing and future work in Section 4.

2. RELATED WORKS

Data discovery, date mining, and date integration

have been important research topics in the field of

heterogeneous distributed database management

systems for years. Two possible approaches are

briefly described as follows:

The warehouse and RDFizer [12] approaches

usually consolidate data from multiple sources.

The advantages of this method are the high

efficiency and the capability of extracting deeper

information for decision making [6]. However, the

warehouse database must set up the “data

cleansing” and “data standardized” areas before its

actual use. Overlapping and inconsistent

information may exists among local sources; thus,

it must be cleansed. Moreover, each local database

may adopt different models from the warehouse’s

(e.g., schema, data type); thus, local sources need

to be reshaped and transformed into a common

one, that is, “data standardized”. As a

consequence, it typically would take months of

planning and effort to create [5].

In contrast, the federated approach provides a

single interface to many underlying data sources

without the user explicitly specifying the target

data source in the query. The advantages of data

federation are the high adaptability to frequent

changes of data sources, and the support of large

numbers of data sources and data sources with

high heterogeneity [6].

A large of variety of federated queries has been

proposed recently for heterogeneous distributed

databases (e.g., [13]; [14]). SPARQL, as a query

language for RDF, has been well accepted to

support querying of multiple RDF databases. It

aims to find matching resources from a graph-like

connected web for the database community [15].

For example, both [16] and [17] described the

approaches for SPARQL queries over a catalogue

of remote endpoints from multiple distributed

relational databases. Moreover de Laborda and

Conrad [18] introduced a SPARQL query

mechanism for mapping relational databases to an

ontologies approach. Contrary to other

approaches, they took the complete schema of the

database into account, creating a database specific

ontology. To the best of our knowledge, no

existing research addresses SPARQL federated

query to support a heterogeneous distributed

database system including the most current and

popular databases, such as relational, Triplestore,

NOSQL, and XML. MUSYOP provides

transparent query access over mapped RDF data

sources. Our approach offers a standard SPARQL

query interface to retrieve the desired distributed

data in RDF format.

Most studies on SPARQL query optimization for a

heterogeneous distributed database system include

two aspects: minimizing communication cost and

optimizing execution localization. According to

[19], communication cost is reflected in the

number of contacted data sources. It directly

influences the performance of the query execution

due to the communication overhead. The approach

of query rewriting identifies the complex elements

and proposes specific rewriting rules; therefore, it

could be used to resolve the cost of

communication among different databases ([20];

[21]; [22]). From [19] point of view, optimizing

execution localization is represented by

identifying optimal index structure and join

ordering in order to execute queries in parallel and

reduce query execution time. However, there is

still little discussion of SPARQL query

optimization across multiple heterogeneous

databases. We aim to fill this research gap.

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 3

Figure 1. MUSYOP architecture of heterogeneous distributed database system

3. ARCHITECTURE OF

HETEROGENEOUS DISTRIBUTED

DATABASE SYSTEM

In this section, we first present a global view of

our architecture; then, we will introduce in detail

each component in the heterogeneous distributed

database system for energy management.

The architecture MUSYOP, as shown in Figure 1,

contains three principal layers. The first layer

includes users’ interfaces and in it, user could send

one or multiple queries via a Graphical User

Interface (1) to a Mediator Server layer. The

mediator server is on the second layer of our

architecture. It is a middleware system containing

a global schema that describes the data throughout

the network, and it is used to support and

coordinate the distributed transaction

management. The mediator is designed to

integrate any kind of component database. Four

important components are stored in this layer:

Query Parser, Distributed Query Decomposer,

Query Optimizer, and Transaction Coordinator.

Once a user’s query is received by the mediator,

the query will be scanned and parsed into a graph

structure of SPARQL. If no error is found, the

generated transactions corresponding to the query

are sent to the Distributed Query Decomposer (2),

which can interpret the query received from the

user’s interface and generates a distributed query

context containing several transactions and their

associations (i.e., joins) [23]. Then, Query

Optimizer takes all distributed transactions (3),

and generates optimal sub-queries to build an

optimal SPARQL query execution plan. The

optimization of such sub-queries is a key factor

concerning the performance of the overall system.

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 4

For each distributed transaction (4), the

Distributed Transaction Coordinator looks up the

corresponding distributed database schema at

which the accessed relation of the transaction

resides from the definition of endpoint addresses.

However, SPARQL queries require an explicit

definition of endpoint URIs. Our system allows

execution of queries without the necessity to

specify target remote endpoints. After that, the

Transaction Coordinator generates the navigation

information in the form of SPARQL for all sub-

transactions according to the associations among

them, and sends then separately to the related

heterogonous database server (5). The third layer

of our architecture contains four different

heterogonous distributed database servers:

relational database, Semantic Web TripleStore,

XML database, and NoSQL database. In order to

encapsulate the details of component databases,

free RDF-wrappers such as D2RQ [24],

SPARQL2XQUERY [25] and AllegroGraph [26]

are associated and placed on the top of distributed

database systems. Therefore, when a SPARQL

query arrives at the heterogonous distributed

database servers, the query does not directly refer

to distributed database. Instead, it contains graph

patterns adhering to a virtual RDF data set. In

addition, RDF-wrappers also participate in query

optimization. Then, the corresponding RDF-

wrapper generates the SPARQL query into a local

query to the local schema DBMS (6). The

execution result of the local transaction is returned

back to the same wrapper (7) and then, the local

result is converted to a uniform format (e.g., XML

or JSON) and is collected by the Mediator Server

(8). Finally, the client receives the global results in

the form of HTML on their interfaces (9).

Now, we will present each component in our

architecture in details as follows:

3.1 Graphic user interface

A type of full screen user interface allows users to

issue queries and to receive the returned results.

3.2 Query parser

Query parser is used to scan and parse query

statements to check syntactic errors, such as query

references, names of relations, and attributes.

3.3 Distributed query decomposer

Distributed query decomposer generates a number

of transactions to match the underlying remote

data sources. These distributed transactions are

submitted and executed in parallel with

heterogeneous databases over remote connections.

Moreover, the distributed query decomposer

assembles transaction results and returns a final

result to the end user.

3.4 Query Optimizer

SPARQL query optimizer in mediator layer

provides an approach of the query execution plan

to minimize the communication and processing

costs to transmit query and result between

mediator and heterogeneous distributed databases.

In fact, the join order has a significant influence

on the cost-effective query execution plan.

Therefore, the join order optimization is usually

the main focus of SPARQL query optimization. In

our architecture, we proposed two steps for query

optimization, namely data source optimization and

join order optimization.

The data source optimization is represented by the

precision of the data source selection and building

sub-queries. The idea is to determine all return

results from different data sources. Specifically,

the data source selection would identify whether

the return result to the SPARQL query is empty

and which data source does not need to be

accessed. Therefore, we send SPARQL ASK

queries [27] including the triple pattern to all the

federation databases and eliminate sources that fail

to match the pattern. This refining of data sources

is more efficient than accepting no results in

regular SPARQL SELECT queries. The results

from source selection are then used to build sub-

queries. Each sub-query contains triple elements:

triple patterns, value constraints and data source

that can answer the sub-query. One sub-query

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 5

could be matched to one or multiple data sources.

The join order optimization is implemented in our

solution to determine the numbers of intermediate

results, since all query execution plans for

heterogeneous distributed databases are based on

the sub-queries generated by the data source

selection. It is possible to use sub-queries joining

larger result sets in a nested loop join after the

smaller result set has been received completely.

This mode of join order is called “Mediator Join”

[19]. It executes the joins in the mediator after

comparing the intermediate result sets from the

data sources, and only the smaller results set will

be returned to the mediator. This approach of join

order is used in our query optimizer to deal with

large result sets and it will drastically reduce the

transfer costs.

3.5 Distributed transaction coordinator

A distributed transaction coordinator is used in our

architecture to manager optimal distributed sub-

transactions. It detects and handles persistent

records of the transactions, and manages the

communications with the databases.

3.6 SPARQL endpoint

A SPARQL endpoint allows users to query a

machine-friendly interface towards a knowledge

base such as triple store via the SPARQL

language. The results are returned in machine-

processable formats, like XML and JSON. In our

case, the four different RDF-Wrappers in the

distributed database server could be considered as

four SPARQL endpoints.

3.7 Mapping relational data to RDF

There are existing approaches for mapping

relational data to RDF, such as Triply [28], R2O

[29], and RDBToOnto [30]. In this study, we

chose the approach of D2R to ease integration of

our relational database and discover information

without replicating the data into a dedicated RDF

triple store. The D2R server uses D2RD mapping

language to provide an automated process to

generate the mapping file between specific

relational database schemas and RDF schemas.

This mapping file convers all tables from

relational database to RDF classes, and it is used

to identify resources, as well as access and

generate property values into RDF format from

database content.

The D2R server allows applications to query

relational databases using SPARQL query

language through the SPARQL protocol. Once the

SPARQL requests arrive from the mediator, they

are rewritten into SQL queries via the mapping

and executed against a D2RQ-mapped relational

database. Finally, the query results will be

represented in XML and JSON formats and

integrated into global results.

3.8 Mapping NOSQL data to RDF

There have been a considerable number of studies

between NOSQL databases and relational

databases in the past couple of years. However,

these studies mainly focused on the conversion

between these two formats, and which type of

database is more effective and optimized for

specific database management issues. Until now,

little attention has been paid to the integration of

NOSQL data and RDF. AllegroGraph is one of

few tools that could help map NOSQL data to

RDF. AllegroGraph server is developed to meet

W3C standards for the RDF; therefore, it could be

used as an RDF database. Similar to D2R for

relational databases, the AllegroGraph server

provides a mapping mechanism, and it allows

query graph style linked data and document based

data in MongoDB by using SPARQL. This

mapping mechanism provides a “read-only” mode

for the database content; thus, the requests of

adding, updating, and deleting will not change any

data in MongoDB. In order to map the data from

two databases, the Mongo ID is used to create the

connection variables for the subject of each triple.

Then, we use the magic predicate from

AllegroGraph to query MongoDB, and the results

are returned in JSON formats.

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 6

3.9 Mapping XML data to RDF

XML has been widely successful for configuration

information storage and information exchange on

the Web. XML defines a set of rules to describe

the content of structured and unstructured

documents in a format that is both human-readable

and machine-readable [31]. Several research

works have clearly observed striking similarities

between semi-structured data models and XML

([32]; [33]). These similarities are reflected in

their irregular or often changing structure, as well

as different attributes for different entities

represented in a model that is often based on using

tree or graph data structures.

A number of combinations of Semantic Web and

XML technologies have been exploited. However,

the objectives of these research works (e.g., [34];

[35]) only focus on data transformation from

XML to RDF. SPARQL2XQuery represented a

comprehensive framework that allows expressing

semantic queries on top of XML data through the

translation of SPARQL queries in XQuery syntax.

SPARQL2XQuery proposed two types of

scenarios to query CML data by using SPARQL.

The first scenario is based on an automatically

generated mapping ontology, and the second is

based on an existing OWL ontology. In our

framework, the first scenario is matched and used

to generate the mappings between the ontology

and the XML schema automatically, as well as to

integrate and query the XML data from the

Sematic Web environment. The query results are

transformed into the desired formats (such as

XML or RDF) and returned to the mediator layer.

4. CONCLUSION AND FUTURE

RESEARCH

This paper describes the architecture of a

heterogeneous distributed database system that we

call MUSYOP. Contrary to other studies, we

proposed a mediator server, a middleware that

contains a global schema throughout the network

and is used to support and coordinate the

distributed transaction management. Based on this

mediator, we showed how to query data among

four widely used data sources, including relational

database, Triplestore, NoSQL database and XML.

With this approach, the system can integrate any

kind of component database and it does not

require any changes to local databases. We also

proposed an approach for query optimization

based on our architecture and, in the near future,

we plan to experiment to enhance the flexibility

and optimize the query to speedily retrieve data.

The next step for this study would be to

implement our solution in a real example in order

to evaluate its performance. In particular, we

intend to implement the MUSYOP to evaluate our

approach by accessing real databases with a large

amount of energy data in Switzerland.

5. ACKNOWLEDGEMENTS

The work described in this paper was supported by

the University of Applied Sciences and Arts

Western Switzerland (HES-SO) under grant

number 34930.

6. REFERENCES

[1] J. M. Smith, P. A. Bernstein, U. Dayal, N. Goodman, T.

Landers, K. W. T. Lin, and E. Wong, “Mutibase -
Integrating Heterogeneous Distributed Database
Systems,” In Proceeding of AFIPS of the May 4-7,
National Computer Conference, pp.487-499, May 4-7,
1981.

[2] P. A. Bernstein, and L. M. Haas, “Information
Integration in the Enterprise,” Communication of the
ACM (51:9), 2008, pp.72-79.

[3] S. Chaudhuri, and U. Dayal, “An Overview of Data
Warehousing and OLAP Technology,” ACM SIGMOD
Record (26:1), 1999, pp.65-74.

[4] A. P. Sheth, and J. A. Larson, “Federated Database
Systems for managing Distributed Heterogeneous, and
Autonomous Databases,” ACM computing Surveys
(22:3), 1990, pp.183-236.

[5] L. M. Haas, and A. Soffer, “New Challenges in
Information Integration,” In DaWak 2009: Data
Warehousing and Knowledge Discovery, T. Pedersen,
M. Mohania, A. Tjoa, editors, Linz, Austria.
Heidelberg: Springer, pp. 1-8, August 31 – September 2,
2009.

[6] B. Wu, J. Li, H. Liu, Z. Zhang, Y. Zhou, and N. Zhao,
“Energy Information Integration based on EMS in Paper
Mill,” Applied Energy (93), 2012, pp.488-495.

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 7

[7] 10gen, Inc., “MongoDB documentation”, 2012.

[8] K. Karatzas, A. Papadopoulos, N. Moussiopoulos, E. A.
Kalognomou, and A. Bassoukos, “Development of a
Hierarchical System for the Tele-transmission of
Environmental and Energy Data,” Telematics and
Informatics (17), pp.239-249, 2000.

[9] T. Berners-Lee, H. James, and L. Ora, “The Semantic
Web,” Scientific American Magazine, 2001.

[10] S. A. Theocharis, and G. A. Tsihrintzis, “Semantic Web
Technologies in e-Government,” World Academy of
Science, Engineering and Technology, vol. 64. 2012,
pp. 1237-1244.

[11] J. Wang, Z. Miao, Y. Zhang, and B. Zhou, “Querying
Heterogeneous Relational Database Using SPARQL,”
Eighth IEEE/ACIS International Conference on
Computer and Information Science, pp.475-480, 2009.

[12] S. Mazzocchi, S. Garland, and R. Lee, “Simile: Practical
metadata for the semantic web,” XML.com, 2006.

[13] V. Josifovski, P. Schwarz, L. Haas, and E. Lin, “Garlic:
A New Flavor of Federated Query Processing for DB2,”
In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data,
Madison, Wisconsin, pp. 524-532, 2002.

[14] S. Schenk, C. Saathoff, S. Staab, and A. Scherp,
“SemaPlorer – Interactive Semantic Exploration of Data
and Media based on a Federated Cloud Infrastructure,”
Journal on Web Semantics: Science, Services and
Agents on the World Wide Web 7(4), 2009, pp. 298-
304.

[15] M. Arenas, and J. Pérez, “Querying Semantic Web data
with SPARQL,” In PODS, ACM, pp. 305–316, 2011.

[16] A. Langegger, W. Wöß, and M. Blöchl, “A Semantic
Web Middleware for Virtual Data Integration on the
Web,” In ESWC’08 Proceedings of the 5th European
semantic web conference on the semantic web: research
and applications. Springer Berlin, Heidelberg, pp. 493-
507, 2008.

[17] H. Chen, Y. Wang, H. Wang, Y. Mao, J. Tang, C. Zhou,
A. Yin, and Z. Wu, “Towards a semantic web of
relational databases: a practical semantic toolkit and an
in-use case from traditional chinese medicine,” In 4th
International Semantic Web Conference (ISWC).
LNCS, Athens, USA, Springer-Verlag, pp. 750-763,
2006.

[18] C. P. de Laborda, and S. Conrad, “Bringing Relational
Data into the SemanticWeb using SPARQL and
Relational OWL,” Proceedings of the 22nd International
Conference on Data Engineering Workshops
(ICDEW'06), pp. 55, 2006.

[19] O. Gorlitz, and S. Staab, “Federated Data Management
and Query Optimization for Linked Open Data,” In
New Directions in Web Data Management. Springer,
pp. 109-137, 2011.

[20] O. Hartig, and R. Heese, “The sparql query graph model
for query optimization,” In 4th European Semantic Web
Conference (ESWC), pp. 564-578, 2007.

[21] D. Kossmann, “The State of the Art in Distributed
Query Processing,” ACM Computing Surveys 32(4),
2000, pp. 422-469.

[22] M. Schmidt, M. Meier, and G. Lausen, “Foundations of
SPARQL query optimization,” In ICDT, pp. 4-33, 2008.

[23] D. Y. Yeh, M. C. Lee, and T. I. Wang, “Mobile Agents
for Distributed Transactions of a Distributed
Heterogeneous Database System,” Proceedings of the
13th International Conference on Database and Expert
Systems Applications (DEXA 2002), Aix-en-Provence,
France, pp. 403-412, 2002.

[24] C. Bizer, and A. Seaborne, “D2rq: Treating non-rdf
databases as virtual rdf graphs,” In 3rd International
Semantic Web Conference (ISWC2004 posters), 2004.

[25] I. Stavrakantonakis, C. Tsinaraki, N. Bikakis, N.
Gioldasis, and S. Christodoulakis, “Sparql2xquery 2.0:
Supporting semantic-based queries over xml data,” In
Semantic Media Adaptation and Personalization
(SMAP), IEEE, pp. 76-84, 2010

[26] J. Aasman, “Allegro Graph: RDF Triple Database,”
Technical Report 1, Franz Incorporated., 2006.

[27] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M.
Schmidt, “FedX: Optimization Techniques for
Federated Query Processing on Linked Data,” In
Proceedings of the 10th International Semantic Web
Conference, Bonn, Germany, pp. 481-486, 2011.

[28] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D.
Aumueller, “Triplify – Light-Weight Linked Data
Publication from Relational Databases,” Proceedings of
the 18th World Wide Web Conference, Madrid, Spain,
pp. 621-630, April 20-24, 2009.

[29] J.B. Rodriguez, and A. Gomez-Perez, “Upgrading
relational legacy data to the semantic web,” Proceedings
of the 15th international conference on World Wide
Web, Edinburgh, Scotland, pp. 1069-1070, May 23-26,
2006.

[30] F. Cerbah, “Learning highly structured semantic
repositories from relational databases: the RDBToOnto
tool,” Proceedings of the 5th European semantic web
conference on The semantic web: research and
applications, Tenerife, Canary Islands, Spain, pp. 777-
781, June 01-05, 2008.

[31] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau, “Extensible Markup Language (XML)
1.0 (Fifth Edition),” World Wide Web Consortium,
Recommendation REC-xml-20081126, 2008.

[32] R. Goldman, J. McHugh, and J. Widom, “From
semistructured data to XML: Migrating the Lore data
model and query language,” In ACM SIGMOD WebDB
Workshop, pp. 25-30, 1999.

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 8

[33] D. Suciu, “Semistructured data and XML. In
Information organization and databases,” Springer US,
2000, pp. 9-30.

[34] M. Droop, M, Flarer, J. Groppe, S. Groppe, V.
Linnemann, J. Pinggera, F. Santner, M. Schier, F.
Schopf, H. Staffler and S. Zugal, “Embedding XPATH
Queries into SPARQL Queries,” In Proceedings of the
10th

International Conference on Enterprise Information

Systems (ICEIS), pp. 5-14, 2008.

[35] W. Akhtar, J. Kopecky, T. Krennwallner and A.
Polleres, “XSPARQL: Traveling be-tween the XML
and RDF Worlds and Avoiding the XSLT Pilgrimage,”
In Proceedings. 5th European Semantic Web
Conference, ESWC 2008, Tenerife, Canary Islands,
Spain, pp. 432-447, June 1-5, 2008.

Proceedings of the International conference on Computing Technology and Information Management, Dubai, UAE, 2014

ISBN: 978-0-9891305-5-4 ©2014 SDIWC 9

