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ABSTRACT 

 
The integration of data from multiple distributed and 

heterogeneous sources has long been an important 

issue in information system research. In this study, we 

considered the query access and its optimization in 

such an integration scenario in the context of energy 

management by using SPARQL. Specifically, we 

provided a federated approach - a mediator server - that 

allows users to query access to multiple heterogeneous 

data sources, including four typical types of databases 

in energy data resources: relational database 

Triplestore, NoSQL database, and XML. A MUSYOP 

architecture based on this approach is then presented 

and our solution can realize the process data 

acquisition and integration without the need to rewrite 

or transform the local data into a unified data. 
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1. INTRODUCTION 

 

Information systems usually consist of multiple 

database systems, which may be stored on 

different computer systems, use different data 

models, etc. it is also very common to find that 

many of these databases contain overlapping and 

inconsistent data. In fact, the real world of 

databases is far from the ideal world of an 

integrated database where all of the data relevant 

to an organization would be stored and managed 

in one single unified and integrated database. 

Rather, databases are non-integrated, distributed 

and heterogeneous [1]. This is especially evident 

in the context of an energy database management 

system that not only requires storage of massive 

amounts of information every day, but also needs 

to be integrated with existing data applications 

like temperature management systems and a 

geographic information system. 

Today’s complex and increasingly globalized 

world which has encouraged waves of mergers 

and acquisitions, presents new difficulties for 

companies as they have to continue to handle huge 

amounts of complex and disparate information 

across regions. Simply exchanging basic 

information today may involve accessing and 

interpreting a wide variety of formats, data 

language, data models, and protocols that go 

beyond just text. Consequently, information 

integration is becoming increasing important and 

it consumes “a great deal of time and money” for 

large enterprises [2]. 

As a result, integrating and querying data from 

heterogeneous sources has become a hot research 

topic among information researchers. In general, 

there are two possible approaches to the 

architecture of a heterogeneous distributed 

database: namely warehouse approach (e.g., [3]) 

and federated approach (e.g., [4]). The separation 

is sometimes called centralized and decentralized 

systems. The first method typically provides a 

uniform interface to materialize the integrated 
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view. The latter approach, on the other hand, is a 

form of virtual integration – the data are brought 

together as needed [5]. In this study we focus on 

the federated approach, as under this architecture 

local databases can continue their local operations 

and transactions without changing the features of 

local databases; but at the same time participate in 

the federation. Therefore, this approach is more 

stable and reliable in our case.  

Companies must systematically manage energy 

use and handle as much energy information as 

possible to get deep and quantitative knowledge of 

the process of energy consumption [6]. As an 

important part of information resource, energy 

information resource supports energy efficiency 

and influences the direction of future performance. 

However, similar to other manufacturers, energy 

companies also involve heterogeneous database 

system problems due to several reasons. First and 

foremost, an energy database management system 

was built according to the characteristics of the 

energy usage in a specific region. Thus, the 

requirements are diverse and as a consequence, 

database systems in the field of energy are rather 

distributed and complicated. For example, 

electricity consumption function requires its 

information system to quickly convert and store a 

large body of non-relational data; thus, a NoSQL 

database like MongoDB [7] fits very well in this 

case. However, in other functions where the data 

are stable with low variability, and if such data are 

related to data sources, a relational database 

should be a good choice. Moreover, Triplestore is 

selected if the consumption data are necessary to 

integrate with other remote data resources, like 

geographic and weather information systems. In 

the case of a semi-structured data model, XML 

serves well and it is usually used to store and 

exchange information of configuration for 

different systems. Second, an integrated system 

was not the main goal at the time the database 

systems were built [1]. Third, energy database 

systems that differ from each other may be caused 

by changes in technology. Last but not the least, in 

contemporary urban environments and at a 

household level, energy management requires that 

the design of systems be able to integrate remote 

and spatially distributed monitoring data while 

being open, low cost, easy to use and flexible [8]. 

All these characteristics indeed set barriers to 

getting accurate energy information in a global 

perspective. Only using the existing tools cannot 

solve these problems.  

The burgeoning semantic web technology has 

provided new methods for integration of 

heterogeneous distributed database management 

systems. According to Tim Berners-Lee et al. [9], 

the Semantic Web "provides a common 

framework that allows data to be shared and 

reused across application, enterprise, and 

community boundaries." While rapidly evolving, 

it is only recently that semantic web technologies 

are becoming available and stable, and practical 

solutions emerge and flourish in many fields. The 

idea involves the concept of Linked Data, which 

aims at enabling the same kind of possibilities for 

data, as well as creating a universal medium for 

exchanging information based on the meaning of 

content on the Web [10] in a way that is usable 

directly by machines. Resource Description 

Framework (RDF) is a general language to 

describe resources, especially on the web, and 

SPARQL is a query language for RDF that can 

join data from different databases, as well as 

documents, inference engines, or anything else 

that might express its knowledge as a directed 

labeled graph [11]. 

To this end, we proposed a uniform approach for 

SPARQL querying a heterogeneous distributed 

database system named MUSYOP. This federated 

method provides transparent query access to 

multiple heterogeneous data sources, including 

relational database, Triplestore, NoSQL database 

and XML, thus realizing the process data 

acquisition and integration without the necessity to 

rewrite or transform the local data. Most extant 

studies in heterogeneous distributed database 

systems only consider a single language (e.g., [1]) 

or only focus on relational data (e.g., [11]). Our 

approach is different from them in two ways: on 

one hand, we do not only look at one specific 

database model (e.g., relational database), but also 

provide solutions to integrate other database 

models. On the other hand, our mediator server 

does not require local databases to translate or 

transfer to a unified language; rather, all local 
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sources remain at the original level thus it has cost 

advantages. Moreover, our solution fulfills the 

energy information calculation from the integrated 

data: e.g., daily, monthly, quarterly, etc. In 

addition, MUSYOP uses query optimization to 

speed-up search executions.  

The remainder of this paper is structured as 

follows: we start with a discussion of related work 

in Section 2. Section 3 describes the architecture 

of MUSYOP for heterogeneous distributed 

database system. We conclude with a description 

of ongoing and future work in Section 4. 

 

2. RELATED WORKS 

 

Data discovery, date mining, and date integration 

have been important research topics in the field of 

heterogeneous distributed database management 

systems for years. Two possible approaches are 

briefly described as follows:  

The warehouse and RDFizer [12] approaches 

usually consolidate data from multiple sources. 

The advantages of this method are the high 

efficiency and the capability of extracting deeper 

information for decision making [6]. However, the 

warehouse database must set up the “data 

cleansing” and “data standardized” areas before its 

actual use. Overlapping and inconsistent 

information may exists among local sources; thus, 

it must be cleansed. Moreover, each local database 

may adopt different models from the warehouse’s 

(e.g., schema, data type); thus, local sources need 

to be reshaped and transformed into a common 

one, that is, “data standardized”. As a 

consequence, it typically would take months of 

planning and effort to create [5]. 

In contrast, the federated approach provides a 

single interface to many underlying data sources 

without the user explicitly specifying the target 

data source in the query. The advantages of data 

federation are the high adaptability to frequent 

changes of data sources, and the support of large 

numbers of data sources and data sources with 

high heterogeneity [6].  

A large of variety of federated queries has been 

proposed recently for heterogeneous distributed 

databases (e.g., [13]; [14]). SPARQL, as a query 

language for RDF, has been well accepted to 

support querying of multiple RDF databases. It 

aims to find matching resources from a graph-like 

connected web for the database community [15]. 

For example, both [16] and [17] described the 

approaches for SPARQL queries over a catalogue 

of remote endpoints from multiple distributed 

relational databases. Moreover de Laborda and 

Conrad [18] introduced a SPARQL query 

mechanism for mapping relational databases to an 

ontologies approach. Contrary to other 

approaches, they took the complete schema of the 

database into account, creating a database specific 

ontology. To the best of our knowledge, no 

existing research addresses SPARQL federated 

query to support a heterogeneous distributed 

database system including the most current and 

popular databases, such as relational, Triplestore, 

NOSQL, and XML. MUSYOP provides 

transparent query access over mapped RDF data 

sources. Our approach offers a standard SPARQL 

query interface to retrieve the desired distributed 

data in RDF format. 

Most studies on SPARQL query optimization for a 

heterogeneous distributed database system include 

two aspects: minimizing communication cost and 

optimizing execution localization. According to 

[19], communication cost is reflected in the 

number of contacted data sources. It directly 

influences the performance of the query execution 

due to the communication overhead. The approach 

of query rewriting identifies the complex elements 

and proposes specific rewriting rules; therefore, it 

could be used to resolve the cost of 

communication among different databases ([20]; 

[21]; [22]). From [19] point of view, optimizing 

execution localization is represented by 

identifying optimal index structure and join 

ordering in order to execute queries in parallel and 

reduce query execution time. However, there is 

still little discussion of SPARQL query 

optimization across multiple heterogeneous 

databases. We aim to fill this research gap. 
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Figure 1. MUSYOP architecture of heterogeneous distributed database system 

 

3. ARCHITECTURE OF 

HETEROGENEOUS DISTRIBUTED 

DATABASE SYSTEM 

 

In this section, we first present a global view of 

our architecture; then, we will introduce in detail 

each component in the heterogeneous distributed 

database system for energy management. 

The architecture MUSYOP, as shown in Figure 1, 

contains three principal layers. The first layer 

includes users’ interfaces and in it, user could send 

one or multiple queries via a Graphical User 

Interface (1) to a Mediator Server layer. The 

mediator server is on the second layer of our 

architecture. It is a middleware system containing 

a global schema that describes the data throughout 

the network, and it is used to support and 

coordinate the distributed transaction 

management. The mediator is designed to 

integrate any kind of component database. Four 

important components are stored in this layer: 

Query Parser, Distributed Query Decomposer, 

Query Optimizer, and Transaction Coordinator. 

Once a user’s query is received by the mediator, 

the query will be scanned and parsed into a graph 

structure of SPARQL. If no error is found, the 

generated transactions corresponding to the query 

are sent to the Distributed Query Decomposer (2), 

which can interpret the query received from the 

user’s interface and generates a distributed query 

context containing several transactions and their 

associations (i.e., joins) [23]. Then, Query 

Optimizer takes all distributed transactions (3), 

and generates optimal sub-queries to build an 

optimal SPARQL query execution plan. The 

optimization of such sub-queries is a key factor 

concerning the performance of the overall system. 
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For each distributed transaction (4), the 

Distributed Transaction Coordinator looks up the 

corresponding distributed database schema at 

which the accessed relation of the transaction 

resides from the definition of endpoint addresses. 

However, SPARQL queries require an explicit 

definition of endpoint URIs. Our system allows 

execution of queries without the necessity to 

specify target remote endpoints. After that, the 

Transaction Coordinator generates the navigation 

information in the form of SPARQL for all sub-

transactions according to the associations among 

them, and sends then separately to the related 

heterogonous database server (5). The third layer 

of our architecture contains four different 

heterogonous distributed database servers: 

relational database, Semantic Web TripleStore, 

XML database, and NoSQL database. In order to 

encapsulate the details of component databases, 

free RDF-wrappers such as D2RQ [24], 

SPARQL2XQUERY [25] and AllegroGraph [26] 

are associated and placed on the top of distributed 

database systems. Therefore, when a SPARQL 

query arrives at the heterogonous distributed 

database servers, the query does not directly refer 

to distributed database. Instead, it contains graph 

patterns adhering to a virtual RDF data set. In 

addition, RDF-wrappers also participate in query 

optimization. Then, the corresponding RDF-

wrapper generates the SPARQL query into a local 

query to the local schema DBMS (6). The 

execution result of the local transaction is returned 

back to the same wrapper (7) and then, the local 

result is converted to a uniform format (e.g., XML 

or JSON) and is collected by the Mediator Server 

(8). Finally, the client receives the global results in 

the form of HTML on their interfaces (9). 

Now, we will present each component in our 

architecture in details as follows: 

 

3.1 Graphic user interface 

 

A type of full screen user interface allows users to 

issue queries and to receive the returned results. 

 

3.2 Query parser 

 

Query parser is used to scan and parse query 

statements to check syntactic errors, such as query 

references, names of relations, and attributes. 

 

3.3 Distributed query decomposer 

 

Distributed query decomposer generates a number 

of transactions to match the underlying remote 

data sources. These distributed transactions are 

submitted and executed in parallel with 

heterogeneous databases over remote connections. 

Moreover, the distributed query decomposer 

assembles transaction results and returns a final 

result to the end user. 

 

3.4 Query Optimizer 

 

SPARQL query optimizer in mediator layer 

provides an approach of the query execution plan 

to minimize the communication and processing 

costs to transmit query and result between 

mediator and heterogeneous distributed databases. 

In fact, the join order has a significant influence 

on the cost-effective query execution plan. 

Therefore, the join order optimization is usually 

the main focus of SPARQL query optimization. In 

our architecture, we proposed two steps for query 

optimization, namely data source optimization and 

join order optimization. 

The data source optimization is represented by the 

precision of the data source selection and building 

sub-queries. The idea is to determine all return 

results from different data sources. Specifically, 

the data source selection would identify whether 

the return result to the SPARQL query is empty 

and which data source does not need to be 

accessed. Therefore, we send SPARQL ASK 

queries [27] including the triple pattern to all the 

federation databases and eliminate sources that fail 

to match the pattern. This refining of data sources 

is more efficient than accepting no results in 

regular SPARQL SELECT queries. The results 

from source selection are then used to build sub-

queries. Each sub-query contains triple elements: 

triple patterns, value constraints and data source 

that can answer the sub-query. One sub-query 
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could be matched to one or multiple data sources. 

The join order optimization is implemented in our 

solution to determine the numbers of intermediate 

results, since all query execution plans for 

heterogeneous distributed databases are based on 

the sub-queries generated by the data source 

selection. It is possible to use sub-queries joining 

larger result sets in a nested loop join after the 

smaller result set has been received completely. 

This mode of join order is called “Mediator Join” 

[19]. It executes the joins in the mediator after 

comparing the intermediate result sets from the 

data sources, and only the smaller results set will 

be returned to the mediator. This approach of join 

order is used in our query optimizer to deal with 

large result sets and it will drastically reduce the 

transfer costs. 

 

3.5 Distributed transaction coordinator 

 

A distributed transaction coordinator is used in our 

architecture to manager optimal distributed sub-

transactions. It detects and handles persistent 

records of the transactions, and manages the 

communications with the databases. 

 

3.6 SPARQL endpoint 

 

A SPARQL endpoint allows users to query a 

machine-friendly interface towards a knowledge 

base such as triple store via the SPARQL 

language. The results are returned in machine-

processable formats, like XML and JSON. In our 

case, the four different RDF-Wrappers in the 

distributed database server could be considered as 

four SPARQL endpoints. 

 

3.7 Mapping relational data to RDF 

 

There are existing approaches for mapping 

relational data to RDF, such as Triply [28], R2O 

[29], and RDBToOnto [30]. In this study, we 

chose the approach of D2R to ease integration of 

our relational database and discover information 

without replicating the data into a dedicated RDF 

triple store. The D2R server uses D2RD mapping 

language to provide an automated process to 

generate the mapping file between specific 

relational database schemas and RDF schemas. 

This mapping file convers all tables from 

relational database to RDF classes, and it is used 

to identify resources, as well as access and 

generate property values into RDF format from 

database content.  

The D2R server allows applications to query 

relational databases using SPARQL query 

language through the SPARQL protocol. Once the 

SPARQL requests arrive from the mediator, they 

are rewritten into SQL queries via the mapping 

and executed against a D2RQ-mapped relational 

database. Finally, the query results will be 

represented in XML and JSON formats and 

integrated into global results. 

 

3.8 Mapping NOSQL data to RDF 

 

There have been a considerable number of studies 

between NOSQL databases and relational 

databases in the past couple of years. However, 

these studies mainly focused on the conversion 

between these two formats, and which type of 

database is more effective and optimized for 

specific database management issues. Until now, 

little attention has been paid to the integration of 

NOSQL data and RDF. AllegroGraph is one of 

few tools that could help map NOSQL data to 

RDF. AllegroGraph server is developed to meet 

W3C standards for the RDF; therefore, it could be 

used as an RDF database. Similar to D2R for 

relational databases, the AllegroGraph server 

provides a mapping mechanism, and it allows 

query graph style linked data and document based 

data in MongoDB by using SPARQL. This 

mapping mechanism provides a “read-only” mode 

for the database content; thus, the requests of 

adding, updating, and deleting will not change any 

data in MongoDB. In order to map the data from 

two databases, the Mongo ID is used to create the 

connection variables for the subject of each triple. 

Then, we use the magic predicate from 

AllegroGraph to query MongoDB, and the results 

are returned in JSON formats. 
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3.9 Mapping XML data to RDF 

 

XML has been widely successful for configuration 

information storage and information exchange on 

the Web. XML defines a set of rules to describe 

the content of structured and unstructured 

documents in a format that is both human-readable 

and machine-readable [31]. Several research 

works have clearly observed striking similarities 

between semi-structured data models and XML 

([32]; [33]). These similarities are reflected in 

their irregular or often changing structure, as well 

as different attributes for different entities 

represented in a model that is often based on using 

tree or graph data structures. 

A number of combinations of Semantic Web and 

XML technologies have been exploited. However, 

the objectives of these research works (e.g., [34]; 

[35]) only focus on data transformation from 

XML to RDF. SPARQL2XQuery represented a 

comprehensive framework that allows expressing 

semantic queries on top of XML data through the 

translation of SPARQL queries in XQuery syntax. 

SPARQL2XQuery proposed two types of 

scenarios to query CML data by using SPARQL. 

The first scenario is based on an automatically 

generated mapping ontology, and the second is 

based on an existing OWL ontology. In our 

framework, the first scenario is matched and used 

to generate the mappings between the ontology 

and the XML schema automatically, as well as to 

integrate and query the XML data from the 

Sematic Web environment. The query results are 

transformed into the desired formats (such as 

XML or RDF) and returned to the mediator layer. 

 

4. CONCLUSION AND FUTURE 

RESEARCH 

 

This paper describes the architecture of a 

heterogeneous distributed database system that we 

call MUSYOP. Contrary to other studies, we 

proposed a mediator server, a middleware that 

contains a global schema throughout the network 

and is used to support and coordinate the 

distributed transaction management. Based on this 

mediator, we showed how to query data among 

four widely used data sources, including relational 

database, Triplestore, NoSQL database and XML. 

With this approach, the system can integrate any 

kind of component database and it does not 

require any changes to local databases. We also 

proposed an approach for query optimization 

based on our architecture and, in the near future, 

we plan to experiment to enhance the flexibility 

and optimize the query to speedily retrieve data.  

The next step for this study would be to 

implement our solution in a real example in order 

to evaluate its performance. In particular, we 

intend to implement the MUSYOP to evaluate our 

approach by accessing real databases with a large 

amount of energy data in Switzerland.  
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