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de Suisse occidentale

Sierre, Switzerland

e-mail: {yann.bocchi,alex.olivieri}@hevs.ch

Abstract—The future Internet of Things (IoT) should enable
machine-to-machine interaction for devices out of numerous
domains. Recent developments and standards focus on how to
deploy IP directly on devices and investigate application protocols
that fit the constrained environments, whereas research on the
integration of widely deployed legacy devices of technologies like
BACnet, LonWorks and KNX is still neglected. For a success
of the ambitions towards an IoT we identify it of highest
importance to research various integration styles for non-IP
based devices already deployed in home and building automation.
Therefore, this paper contributes an overview of various possible
integration styles, provides a concrete multi-protocol integration
architecture and presents evaluation results of a proof of concept
implementation.

Index Terms—Internet of Things, IPv6, Building Automation,
Multi-protocol integration, Web services

I. INTRODUCTION

The Internet of Things (IoT) promises to interconnect bil-

lions of devices out of different domains, ranging from supply

chains, telecommunications, home and building automation,

entertainment and more recently also smart metering and smart

grid infrastructures. For the desired interconnection, a trend

towards Web service based communication protocols resting

on HTTP and XML can be seen. Also, resource oriented

so called RESTful Web services seem to be favored over

SOAP based approaches which tend to be better suited for

the integration of enterprise IT systems.

Standards for a so called constrained restful environment

have been identified by an IETF working group1. Core tech-

nologies to be supported by future native IoT devices include

IPv6, IPv6 on low power wireless personal area networks

(6LoWPAN) and the constrained application protocol (CoAP).

They allow equipping every device with a unique (IPv6)

address and even deploy the required protocol stacks on

resource limited (embedded) devices with only a fraction of

memory capacity compared to an (embedded) PC.

As a next step, the interconnection to building services has

to be taken into consideration. Within this domain, several

1https://datatracker.ietf.org/wg/core/charter/, Accessed: 15.05.2012

standards and technologies exists, like BACnet, LonWorks,

KNX, DALI, EnOcean and ZigBee to name just a few of them.

They are tailored to the very specific needs of building automa-

tion and the respective building services. It is unlikely that they

will be replaced by a new system based on an IoT protocol

stack with IPv6 at its network layer. Instead, it is necessary that

they are integrated into the IoT bridging the benefits of both

worlds. For the integration of building automation existing

technologies like OPC UA [1], BACnet/WS [2] and oBIX [3]

provide the required capabilities to map building automation

systems(BAS) technologies to Web service based protocols.

These technologies provide standardized information models

and protocol definitions that are not provided by CoAP. In [4]

oBIX is mentioned as possible application layer protocol for

integrating BAS:

“Instead of running a control network specific

building automation protocol such as BACnet/IP or

KNX over 6LoWPAN, oBIX together with compres-

sion and UDP/IP binding may be a solution.”

Therefore this paper presents an IoT protocol stack that uses

oBIX, tackles the compression of XML messages through EXI

and offers a UDP protocol binding based on CoAP with IPv6

basis. Furthermore, different state of the art integration styles

of BAS are discussed that outline alternatives to the presented

approach. Finally, the architecture of a multi-protocol gateway

is presented that allows a seamless integration of existing BAS

technologies into the identified IoT protocol stack. Further, a

proof of concept implementation is used to evaluate the results.

The paper is structured as follows. Section II provides an

overview of related research work. Next, different state of the

art integration styles for BAS are discussed in Section III. A

possible target IoT system and its protocol stack are outlined

in Section IV, followed by an integration approach based on

a transparent multi-protocol gateway in Section V. Finally,

Section VI summarizes the results and contributions and

provides an outlook on further work.

2012 IEEE International Conference on Green Computing and Communications, Conference on Internet of Things, and Conference

on Cyber, Physical and Social Computing

978-0-7695-4865-4/12 $26.00 © 2012 IEEE

DOI 10.1109/GreenCom.2012.42

225



II. RELATED WORK

In [5], Shelby presents how RESTful Web services can

be adopted for a deployment on constrained devices con-

nected through wireless networks. The paper introduces the

standardization work done by the IETF Constrained Restful

Enviroments (CoRE) working group, with the Constrained

Application Protocol (CoAP) as main contribution. The in-

teraction through CoAP with native IoT devices is sketched

and the possible architecture is outlined. [4] deals with the

implications of constrained data links that operate IPv6 on

the upper application layer protocols. Furthermore, this book

provides first ideas how to integrate various application layer

protocols in the IoT.

[6] presents how CoAP and EXI can be used to deploy Web

services on constrained devices. The experimental evaluation

gives first insights in the footprint of the CoAP stack imple-

mentation and packet size improvements that can be gained by

the use of EXI. In [7], it is shown how CoAP can be used as

transport binding for SOAP Web services using DPWS on top

of the implementation. Both papers present possible protocol

stacks for native IoT devices. In contrast, we present how

existing BAS devices can be integrated through a transparent

gateway in such novel systems.

State of the art integration of BAS using Web service tech-

nologies like OPC UA, BACnet/WS and oBIX are presented

in [8], [9] and [10]. The implications of using IPv6 as network

layer for the integration of BAS in the IoT are analyzed in [11].

The advantages of using Web technologies for the IoT and

a first realization of a Web of Things are presented in [12]

and in [13].

Semantic problems that arise when different application

layer protocols are integrated, and a solution to these prob-

lems based on ontologies and semantic Web technologies are

addressed by e.g. [14] and [15].

In 2008, the Universal Device Gateway [16] research project

explored and tested the potentiality of integrating heteroge-

neous communication protocols through IPv6. The UDG ar-

chitecture demonstrates the possible integration and interoper-

ability among various protocols used in building environment,

such as KNX, X10, and ZigBee. The protocol piles are inte-

grated from physical to application layer, with an abstraction

of the various application layers into a unified semantics. This

architecture is used as a multi-protocol gateway as well as an

interoperability enabler for cross-protocol interactions. UDG

builds on IPv6 as the core network protocol and hence uses

IPv6 addresses to communicate with devices and the newly

developed UDG multi protocol boards.

III. INTEGRATION STYLES

Typical building automation systems (BAS) define several

layers of the ISO/OSI reference model and care for a specific

application model. The application models usually follow a

data point approach, meaning that every device is expressed

as a collection of input and output data points of well defined

data types. Data points are often grouped to functional blocks

which define a desired behavior (e.g. light switch actuator).

The meta data and semantics of functional blocks are provided

in a human readable way. Furthermore the application layer

protocols are strongly aligned to the custom network and data

link layers of the underlying BAS technology, which typi-

cally require a variety of interaction styles like client/server,

producer/consumer, or publish/subscribe communication. The

network layer of a BAS is usually kept quite simple. However,

reliable and non-reliable data transfer, point-to-point, multicast

or broadcast based communication should be supported.

For BAS integration in an IoT it is not possible to simply

put application layers of building automation technologies on

top of a common network layer, since these technologies

usually define custom protocols for the transport and network

layer. Instead, gateway devices are necessary. As shown in

Fig. 1, these gateways may operate either following an N-to-
N protocol mapping approach or may map all technologies to

one protocol following an N-to-1* approach. In this case, 1*
stands for a new IoT protocol stack (IoTsys) that allows native

interaction with a device in the IoT.

BACnet

KNX Lon
Works

ZigBee

...DALI

BACnet

KNX Lon
Works

ZigBee

...DALI

1*

Fig. 1: N-to-N or N-to-1* BAS integration

For an N-to-N integration two BAS systems are made com-

patible with each other through gateways featuring different

network options. In the best case, the gateway is not visible

for the other BAS system. If two BAS technologies rest upon

the same network layer, multi-protocol devices may come

into play as presented in [17]. Nevertheless, for this kind of

integration in the worst case
n∗(n−1)

2 mappings are required.

The N-to-1* integration approach refers to the integration

of different building automation systems to a common target

system. The mapping effort is reduced to n mappings, since

all technologies have to be integrated only into one new

technology. The problem remains to identify the commonly

accepted 1* technology that is ready for the Internet of Things.

Our work focuses on a common technology based on Web

services to provide open and interoperable interfaces. In this

respect, technologies like OPC UA, BACnet/WS and oBIX are

candidates. Their Web services interfaces can even be used for

enterprise application integration. Figure 2 shows an N-to-1*
mapping of two BAS representatives (i.e., BACnet and KNX)

to the IoT, where IPv6 acts as a common IoT network layer.

Though different options for layers above IPv6 exists, this

paper concentrates on UDP, CoAP and oBIX.

When it comes to the integration of BAS another decision to

be made is at which point the integration happens. It is either

possible to provide each device with a Web service interface

or to offer centralized interface types. A centralized server

has the advantage of providing the required computational

resources for a Web service interface for all devices behind
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Fig. 2: Integration challenges

it. A decentralized approach requires more computational

resources on field devices like sensors and actuators but has the

advantage that Web services can natively be used to interact

with a device and the devices by themselves may even use

Web services to interact with each other (if IP is supported

as network option). Fig. 3 identifies four possible integration

approaches.
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Fig. 3: Centralized and decentralized integration

1) A centralized server at the IP backbone of a BAS is the

state of the art approach and allows the integration into

enterprise systems and remote access.

2) Providing the Web service interface at the automation

layer (which bridges the backbone and the field layer)

via an IP/field router is a more decentralized approach

but from the application layer aspects equivalent to the

central deployment.

3) IP field devices using IP not only as data link but also

as network layer protocol can be equipped with Web

services and may offer this interface directly to other

devices and Web service clients.

4) Finally, it is even possible to emulate Web service in-

terfaces with a separate IPv6 address either at a central-

ized server or at an IP/field router acting as transparent

gateway. Equipping this gateway with multiple protocol

stacks and physical interfaces to different media allows

to build a transparent multi-protocol gateway mentioned

above.

IV. THE IOT SYSTEM

For integration of existing BAS technologies into an IoT

system standardization should not be neglected. An impor-

tant work towards common IoT standards is handled by the

IETF working group on Constrained RESTful Environments

addressing the Constrained Application Protocol. CoAP is

designed to work on a protocol stack based on IPv6 and UDP,

which perfectly fits wireless devices running, for instance,

6LoWPAN. CoAP is an application protocol that allows in-

teracting with resources on the devices (sensors, actuators or

controllers) in a RESTful interaction style.

IPv6 is a main building block of the IoT, since the 32 Bit

address space provided by IPv4 is already exhausted and not

capable of providing each device with a unique address. The

128 Bit address space of IPv6 offers the required means to host

billion of devices which will be part of an IoT. With IPv6, each

device gets an IP address for identification. It enables globally

valid IP addresses for endpoints and allows direct end-to-end

communication and security facilities without the need for the

definition of an overlay network as required for peer-to-peer

networks with peers residing in local IPv4 networks. More

information on how IPv6 supports the integration of building

automation in the IoT is presented in [11].

IP provides the facilities to send one packet from one com-

munication partner to another through connected IP networks.

On top of IP either the connection-oriented TCP can be used or

one may opt for the packet-oriented UDP. Both protocols have

their particular advantages and drawbacks. When it comes to

the definition of new native IP devices that probably operate

wirelessly and on constrained resources, UDP is a superior

candidate. If one considers 6LoWPAN as the most promising

option for operating IPv6 directly on devices, UDP is the

best choice since IEEE 802.15.4 provides a frame size of 127

Bytes with a layer two payload size below 72 Bytes [4]. In

order to avoid fragmentation, the application layer protocol

data units should not exceed this limit. Now the question

arises which application layer protocol should be used and

how the application layer interfaces and services should be

defined. In the Internet, Web services are a sound way to

offer services to a service consumer and to realize machine-to-

machine communication. Where in the enterprise IT context

SOAP based Web services are prevalent due to the large

number of features of the WS-* stack, for resource limited

devices or in the mobile area RESTful services are a preferable

choice. RESTful services follow a resource oriented service

design and rely on proven technologies like DNS, HTTP and

XML that once made the WWW successful.

For building automation integration, the OASIS standard

oBIX is one of the most promising choices. oBIX provides an

object model to represent devices in the domain of building

automation as well as a Web service based protocol to interact

with the oBIX objects. It follows a RESTful design and is

based on a simple protocol that can be mapped to HTTP

or SOAP. XML is used for the encoding of the objects. By

using HTTP and XML, oBIX servers provide an interoperable
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interface that is not restricted to any specific platform. A

client-server model is used for the interaction between oBIX

clients and servers defining three request types on objects,

which are i) read, ii) write and iii) invoke. These request

types are mapped straight forward to the HTTP protocol

verbs get, put, and post. The object model provides the

required meta model for information modeling of resources. It

defines 17 standard object types ranging from basic data items

like bool, int, real and str over to more complex

object types. Figure 4 provides an overview of the oBIX

object model. Each object is addressable through a uniform

resource identifier (URI). Extensibility is provided, allowing

to define custom objects and contracts based on the existing

XML syntax defined by the standard. Object types are defined

through so called oBIX contracts that provide a template and

common object definition that represents the semantics of the

“types” used in oBIX. These contracts can be used to build

clients and servers, probably by different vendors, that inter-

work out of the box. The object model, the network protocol

and the contract methodology are enriched with a support

for watches, histories and alarms. For clients being

notified about changes of objects, oBIX provides a model for

client polled eventing called watches. A watch represents

a per-client state object that is created by a client using the

watch service, exposed at a well-known URI. The client

can register objects hosted by the server using their respective

URIs and then poll for changes using the pollChanges
operation defined by the watch object. However, due to the

usage of HTTP, a client still has to poll for changes. The only

improvement by this mechanism is that the full object is not

transmitted twice if no change occured since the last poll for

change.

The history object allows to query for the history of

an arbitrary data point or oBIX object that implements the

obix:history contract. For querying a history object, a

filter with a number of records limit and a data range can be

provided. Furthermore, a roll up can be done on a time series

of elements and the results can be provided in a normalized

interval.

The alarming feature of oBIX allows querying, watching

and acknowledging alarms using a normalized interaction

model. An alarm is used to indicate a certain event that

requires an action or a notification of a user, e.g., a system

operator. This requires an acknowledgement if a compensating

action is executed and furthermore a method is required to

resolve the alarm. As for watches, the alarming of oBIX still

requires the client to poll for alarms.

Regarding security, oBIX does not specify any mechanism

and shifts this responsibility to the transport layer of the

protocol.

What remains between oBIX and IPv6 is the protocol

used for message exchange and the transport layer. For this

reason, oBIX provides a protocol binding for HTTP and SOAP.

Both HTTP and SOAP rely on TCP for reliable message

exchange for a connection oriented communication between

two parties. This is where CoAP comes into consideration.

obj 

name: str 
href: uri 
is: contract 
null: bool 
icon: url 
displayName: str 
display: str 
writable: bool 
status: status 

val 

val: <type> 

list 

of: contract 
min: int 
max: int 

op 

in: contract 
out: contract 

feed 

in: contract 
out: contract 

ref err 

bool 

range: uri 

int 

min: int 
max: int 
uint: int 

real 

min: real 
max: real 
uint: uri 
precision: int 

str 

min: int 
max: int 

enum 

range: uri 

uri 

abstime 

min: abstime 
max: abstime 
uint: str 

reltime 

min: reltime 
max: reltime 

date 

min: date 
max: date 
tz: str 

time 

min: time 
max: time 
tz: str 

Fig. 4: oBIX object model [3]

CoAP is a mapping of the TCP based HTTP protocol to

UDP, but due to the connectionless message exchange defines

facilities for acknowledged message exchange (cf. Figure 5)

and furthermore allows multicast based and asynchronous

communication. Figure 6 illustrates the abstract layering of

the CoAP protocol stack, which maps the asynchronous packet

oriented communication of UDP to a request/response inter-

action aligned to HTTP.

Client Server
CON [0xbc90]

GET /temperature
(Token 0x71)

ACK [0xBc90]
2.05 Content
(Token 0x71)

„22.5 C“

Fig. 5: CoAP message exchange [18]

Still, for carrying oBIX messages, a protocol binding for

CoAP needs to be defined. Furthermore, the concepts of oBIX

alarms and event feeds can take benefit of the asynchronous

communication of CoAP. Using XML based messages is

heavyweight for constrained devices given that IEEE 802.15.4

as data link layer limits the application payload within a single

message to less than 72 Bytes in order to be transmitted

without fragmentation. oBIX contracts need to be carefully

designed to run over such links. A solution to this problem is
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Fig. 6: Abstract layering of CoAP [18]

the binary protocol binding of oBIX. Another way to solve this

problem in a more standardized way is to use efficient XML

interchange (EXI) for encoding the XML artefacts. EXI is

a W3C recommendation2, therefore making this optimization

technology the more preferable way.

Figure 7 provides an overview of the possible protocol

alternatives of an IoT protocol stack identifying the most

promising candidates.

oBIX

CoAP

Existing Binding

IoT contracts

New Binding

New/
Modified

IoT shared 
ontology

IoTSyS candidate

IEEE 802.15.4
IEEE 802.3 
Ethernet Other links

6LoWPAN

IPv6

UDP TCP

HTTP

SOAP

BACnet/WS OPC UA

Domo ML Sensor ML

EXI
Existing

Fig. 7: IoT protocol stack

A. Required CoRE extensions

CoAP in the current working draft3 provides a request/re-

sponse interaction model leaving the potential of asynchronous

communication of UDP unused. The following message types

are supported: confirmed (CON), non-confirmed (NON), ac-

knowledged (ACK) and reset (RST) together with the methods

get, put, post and delete. The advantages of asyn-

chronous communication regarding observing changes of a

resource are taken into account by the separate specification

for observing resources in CoAP4. There the observe option

is defined for get requests and allows to receive multiple

response messages without the requirement of permanent

resource polling.

2http://www.w3.org/TR/2011/REC-exi-20110310/, Accessed: 30.07.2012
3http://tools.ietf.org/html/draft-ietf-core-coap-11, Accessed: 30.07.2012
4http://tools.ietf.org/html/draft-ietf-core-observe-05, Accessed: 30.07.2012

oBIX provides the concept of Watches, Feeds and

Alarms for resources, but is tailored to a polling interaction

model. It is possible to create stateful Watch objects that can be

polled by a client using the pollChanges operation defined

by the oBIX object through a post request. This polling

interaction model can be kept when using oBIX on top of

CoAP but the advantages of asynchronous communication are

not used. So for watching resources it is possible to simply

rely on the CoAP observe option for get requests and to

define this new semantics in a oBIX protocol binding to CoAP.

However, it would be desireable to define the observe option

also for the other request types. This would allow to perform

a CoAP post call on an oBIX pollChanges operation

and to receive continuous change notifications. Furthermore,

for alarming it is desirable to provide certain conditions as

payload. These conditions depend strongly on the information

model of the application layer protocol above CoAP, so it is the

most reasonable way to provide conditions as payload within

either a post or put request.

B. From oBIX to IoTSyS

Using oBIX as application layer protocol for the IoT re-

quires several enhancements. Firstly, a protocol binding to

CoAP needs to be defined. This works straightforward and

a reference implementation has been performed for the evalu-

ation of the presented concept in this paper. Secondly, instead

of defining a custom binary application protocol it is desirable

to use EXI. Promising results can be achieved using EXI

even without having a schema. Thirdly, generic IoT contracts

for the various device types need to be specified as oBIX

contracts comparable to the use of functional blocks in BAS.

This provides interworking additionally to the interoperability

and further allows to define XML schema documents leading

to a fixed EXI grammar and optimal binary representation of

exchanged messages. IoT application protocol data should fit

in the best case into a single packet of a constrained wireless

data link. A careful design of the oBIX contracts is required

and an EXI based compression allows to further optimize the

packet size. A shortcoming of oBIX is that the contracts pro-

vide semantics only to human beings. This can be addressed

by generating oBIX contracts from ontologies. Ontologies

define a common vocabulary and provide the means to make

semantics available for processing through machines. Generic

ontologies that represent the common concept of different

BAS application layers [14] can act as a solid foundation

for a future IoT ontology. This shared IoT ontology can be

used to generate oBIX contracts. oBIX objects can then be

annotated with semantic attributes that refer to the according

concept of the ontology. Existing standard models defined

by SensorML [19] or DomoML [20] can also be used as

references for an IoT ontology.

Regarding discovery of resouces, the CoRE link format

uses the well known interface /.well-known/core to

discover the resources hosted by a device. The oBIX lobby

provides the same functionality and the representation can

easily be mapped to the CoRE representation. Furthermore
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the rt attribute reflecting the resource type can by assigned

with the unique name of an oBIX IoT contract.

These mentioned adjustments of oBIX combined with a

protocol binding to CoAP, a message encoding based on EXI

and standardized oBIX contracts provide the protocol stack for

an Internet of Things system. It is therefore named IoTSyS.

V. INTEGRATING BUILDING AUTOMATION IN THE IOT

SYSTEM

The previous section outlined a possible protocol stack of

a target IoT system. New IoT devices might work natively

on that stack using IPv6 for addressing and a UDP based

application layer protocol for message exchange, which allows

to use this application layer protocol directly on constrained

devices like 6LoWPAN nodes. The oBIX based approach in

the previous section is one possible realization of an IoT

system. With the extension to oTIX, a suitable API to devices

is provided through a uniform interface and object contracts.

The question still to be answered is how existing (legacy)

systems can be integrated. For oBIX, BACnet/WS or OPC

UA a centralized server that provides access to all devices of

a BAS system is a common way. Devices directly interacting

with each other using a RESTful approach are not the typical

usage scenario for the existing BAS integration technologies.

There is no direct interworking and for each specific enterprize

system the integration has to be done manually.

In the centralized approach a single Web service endpoint

is offered with a single IPv6 address. Thus, the addressing

is moved to the information model of the specific integration

technology. A gateway following such an integration approach

from KNX to oBIX is presented in [10]. For the realization

of the IoT, this integration approach is not satisfactory. The

Web service interface acts as a single visible application level

gateway for the client and direct device interaction is not

possbile with such an approach.

In contrast the CoRE architecture presented by [5] uses Web

services on a device level and a more convenient way for

integrated existing devices is to build a transparent gateway,

that provides an CoAP interface bound to an IPv6 address

for each client that resides behind the gateway. This allows

to extend the CoRE architecture transparently (see Figure 8)

with devices using existing BAS technologies. Transparency

is guaranteed because an application acting as a CoAP client

cannot determine whether it is communicating with a native

CoAP device or a legacy device residing behind the gateway.

Furthermore, it is also possible that two legacy devices interact

with each other using the IoT API.

A. Multi-protocol gateway architecture

Figure 9 provides a closer view on the required components

of the IPv6 multi-protocol gateway.

The protocol adapters (e.g., KNX Adapter) are key compo-

nents of the gateway architecture. They provide the interface

to the BAS specific application layer protocol. Depending on

the BAS, the connections to different physical and data link

layers need to be provided. Furthermore, the mapping of BAS
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Fig. 9: Multi-protocol gateway architecture

specific concepts to the generic objects adhering to the IoT

oBIX contracts has to happen there. These contracts allow

to map various technologies into a common object oriented

representation, which can act as a connecting element to an

ontology based on semantic technologies.

The oBIX handler takes care of read, write and invoke
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requests to the oBIX objects. In general it is independent of

the protocol that is used to interact with the objects. It also

manages oBIX watches that are used to monitor changes of

objects. It uses the observer pattern to realize this functionality.

In case of an CoAP get request with an observe option, it also

takes care to send asynchronous responses if changes occur.

For clients both ways are possible to observe a resource, either

the traditional oBIX polling or the CoAP observe approach or

both.

Furthermore the oBIX handler publishes the represented

devices through the traditional oBIX lobby which can be easily

mapped to the CoAP /.well-known listing of available

resources. Beside this centralized device access approach, the

oBIX handler also publishes each device using a separate

HTTP and CoAP handler on a per-device IPv6 address. In

this way it is possible to have a centralized access and per-

device access in parallel, since requests to all endpoints will

finally be handled by the same oBIX objects.

The EXI compression can happen transparently between the

HTTP and CoAP handler and the oBIX handler if no schema

information is used for compression. The oBIX handler only

works on XML representation.

Finally, multiple HTTP and CoAP handlers are provided and

bound to virtual and physical network interfaces. An HTTP

and a CoAP handler can be provided offering a centralized

interface conforming to the traditional oBIX approach to

interact with devices. In the case of HTTP this is fully

compliant to the oBIX standard, at the same time per-device

interfaces can be offered with HTTP and CoAP. The HTTP

interfaces remain oBIX compliant and the CoAP interfaces

are compliant to the CoRE standards. An exception is the

observe support for CoAP get requests and the CoAP

binding as well as the use of EXI for oBIX. However, it

is argued that these modifications do not violate the initial

intentions of the standard, but rather enhance it. This is, for

example, evidenced by standard-compliant clients still being

able access all devices.

B. Interaction example

For the illustration of the interaction, a simple scenario

featuring a sensor and an actuator is taken. For the sensor, a

push button is used as example. It can be turned on or off and

controls an actuator which is represented by a light switching

actuator. The latter device can be used to switch an electric

circuit, possible powering one ore multiple lights.

The IoT contracts define the data points offered by these

devices and are provided in Listing 1 and 2. The contracts

are quite similar, since both offer a single boolean datapoint,

but in case of the actuator it is also writeable. For more

sophisticated devices there would be more data points, e.g. a

dimming push button or a dimming actuator would also have

an integer property with the current setting.

Listing 1: Light switching actuator contract

<obj href="iot:LightSwitchActuator" is="iot:Actuator">
<bool name="value" href="value" val="false" writable="

true"/>

</obj>

Listing 2: Push button contract

<obj href="iot:PushButton" is="iot:Sensor">
<bool name="value" href="value" val="false"/>

</obj>

Assume a real push button and light switch actuator

are bound to the context paths [Central IPv6
address]/lightSwitch and [Central IPv6
address]/pushButton at the centralized IPv6 interface

as well as directly to the context root for the virtual per-device

IPv6 [IPv6 address light switch]/ and [IPv6
address push button]/. For these devices multiple

interactions are possible with application clients. First of all

the objects can be read through a HTTP get or CoAP get
resulting in a response equivalent to the above representation.

In a centralized approach the get can be sent to [Central
IPv6 address]/lightSwitch, otherwise the request

can be directly performed using the per-device IPv6 address.

A response to such a request returns the full extent of the

object, which is in most cases not required. Since the boolean

data point is also a oBIX object, it is possible to add the name

of the data point to the request path. This results in either a

lightSwitch/value or just a /value request.

Writing on an object, e.g. switching the actuator, is achieved

using put requests in oBIX. This can be done either using

the full object or just a data point object as given in Listing 3

and 4, respectively. As it can be seen, using a put on a data

point is characterized by a much simplified payload.

Listing 3: Write on full object

PUT http://[Central IPv6 address]/lightSwitch

<obj href="http://[Central IPv6 address]/lightSwitch" is="
iot:LightSwitchActuator">

<bool name="value" href="value" val="true" writable="true"
/>

</obj>

Listing 4: Write on data point

PUT http://[Central IPv6 address]/lightSwitch/value

<bool val="true"/>

Now if an application is interested in the change of the

light switching actuator or in the action of pressing the button

there are two possibilities. Firstly, a watch object can be

created providing a per-client state of changes to the object.

Conforming to oBIX, the requests and responses listed in

Listing 5 and 6 are required.

Listing 5: Create oBIX watch object

POST http://[Central IPv6 address]/watchService/make

Response:
<obj href="http://[Central IPv6 address]/watch0" is="obix:

Watch">
<op name="add" in="obix:WatchIn" out="obix:WatchOut"/>
<op name="remove" in="obix:WatchIn" out="obix:Nil"/>
<reltime name="lease" val="PT60S"/>
<op name="pollChanges" in="obix:WatchIn" out="obix:

WatchOut"/>
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<op name="pollRefresh" in="obix:WatchIn" out="obix:
WatchOut"/>

<op name="delete" in="obix:Nil" out="obix:Nil"/>
</obj>

Listing 6: Add object to watch

POST http://[Central IPv6 address]/watch0/add
Payload:
<obj is="obix:WatchIn">
<list name="hrefs">

<uri val="/lightSwitch" />
</list>

</obj>

Response:
<obj is="obix:WatchOut">
<list>
<obj href="http://[Central IPv6 address]/lightSwitch" is=

"iot:LightSwitchActuator">
<bool name="value" href="value" val="false" writable="

true"/>
</obj>

</list>
</obj>

The client has to poll for changes using the pollChanges
operation provided by oBIX, which provides the same re-

sponse if some data point or sub object of the object has

changed. The same procedure can be done only on the data

point object itself in order to be more efficient regarding

message size. This interaction can be bound easily to CoAP

using the same method calls and a request/response interaction.

However, since polling is not a satisfactory way of being noti-

fied about changes, a CoAP get request using the observe
option is more convenient. This request can bypass the creation

of watches and directly subscribe to oBIX objects observing

them as shown in Listing 7.

Listing 7: CoAP observe to oBIX object

GET [Centralized IPv6 address]/lightSwitch/value
Observe: 0
Token: 0x44

Response:
2.05 Content
Observe: 10
Token: 0x44
Payload:
<bool name="value" href="value" val="true" writable="true"/>

2.05 Content
Observe: 20
Token: 0x44
Payload:
<bool name="value" href="value" val="false" writable="true"/

>

Control applications can use the observe functionality to

link various IoT objects. E.g. a push button can be linked

to a light switching actuator independent of the underlying

technology and there is no difference between legacy devices

and native IoT technologies.

C. Implementation

The implementation is based on an existing open source

oBIX server for KNX5. Several modifications to this server

have been performed in order to implement the described

5https://www.auto.tuwien.ac.at/a-lab/knx2obix.html, Accessed: 30.07.2012

changes to oBIX as well as to realize virtual IPv6 interfaces on

a per-device level. The oBIX implementation is based on the

oBIX toolkit6. As HTTP server the NanoHTTP server7 version

1.25 is used. As CoAP server the open source implementation

Californum8 is taken. OpenEXI9 is used between the oBIX

handler and the server components to encode and decode

the payloads. The current proof of concept implementation

supports KNX and virtual devices. For KNX the Java library

Calimero10 is used. For the simple interaction scenario a small

testbed based on a KNX push button and switching actuator

as shown in Figure 10 is used. For the creation of virtual IPv6

interfaces a simple Linux shell script is triggered from the Java

application.

Fig. 10: KNX Testbed

D. Evaluation

For the evaluation the above mentioned interaction scenarios

are tested using the Firefox plugins Copper11 and HttpRe-

quester12 to interface the multi-protocol gateway. By using

Californum as CoAP server and Copper as CoAP client the

conformance of the multi-protocol gateway to the ETSI CoAP

Plugtest13 can be verified. The resulting message size of the

interactions is analyzed using Wireshark14 and the results are

shown in Table I.

It can be seen that the extension to oBIX using a CoAP

protocol binding and EXI are significant and the payload can

be reduced below the important limit of 127 Bytes, which is

optimal for 6LoWPAN data links. Furthermore, using CoAP

and the observe service heavily reduces the required network

traffic and ensures real-time updates of changed information.

VI. CONCLUSION & FURTHER WORK

The integration of legacy systems in the Internet of Things

is a challenging task. This paper presents a concept and

evaluation results of a seamless integration approach using a

transparent multi-protocol gateway that provides a traditional

6http://sourceforge.net/projects/obix/, Accessed: 30.07.2012
7http://elonen.iki.fi/code/nanohttpd/, Accessed: 30.07.2012
8http://people.inf.ethz.ch/mkovatsc/californium.php, Accessed: 30.07.2012
9http://openexi.sourceforge.net/, Accessed: 30.07.2012
10http://calimero.sourceforge.net/, Accessed: 30.07.2012
11http://people.inf.ethz.ch/mkovatsc/copper.php, Accessed: 30.07.2012
12https://addons.mozilla.org/de/firefox/addon/httprequester/, Accessed:

30.07.2012
13http://www.etsi.org/plugtests/coap/coap.htm, Accessed: 30.07.2012
14http://www.wireshark.org/
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Technology oBIX(HTTP) oBIX(CoAP)
Encoding XML EXI XML EXI

GET object

Conversation 1125 1017 315 250
Request Protocol 401 353 10 12

Payload 0 0 0 0
Response Protocol 81 88 6 6

Payload 175 108 175 108

GET data point

Conversation 983 892 247 199
Request Protocol 333 285 16 18

Payload 0 0 0 0
Response Protocol 81 88 6 6

Payload 101 51 101 51

PUT object

Conversation 1096 991 448 352
Request Protocol 372 331 8 12

Payload 136 104 134 104
Response Protocol 81 88 6 6

Payload 175 104 175 104

PUT data point

Conversation 1042 938 264 213
Request Protocol 392 336 15 22

Payload 19 17 19 17
Response Protocol 81 88 6 6

Payload 101 46 101 46

POST polling

Conversation 1205 1038 308 231
Request Protocol 501 453 23 27

Payload 0 0 0 0
Response Protocol 81 29 6 6

Payload 155 88 155 88

CoAP observe

Conversation n.a. n.a. 255 205
Request Protocol n.a. n.a. 20 24

Payload n.a. n.a. 0 0
Response Protocol n.a. n.a. 10 9

Payload n.a. n.a. 101 46

All numbers provided in Bytes.
Conversation refers to data link frame size including request
and response and in the case of TCP the connection open and close.
EXI uses Bit-aligned encoding without schema information.

TABLE I: oBIX protocol binding and encoding evaluation

oBIX interface and a per-device IPv6 CoAP interface conform-

ing to the CoRE standards. The feasibility of a CoAP and EXI

binding for oBIX is proven and the use of oBIX features on top

of CoAP is identified as a performant solution. The integration

approach may conform to the existing standards. However, to

provide an optimal solution, the standards of oBIX and CoRE

need to be extended. The presented concepts thus go beyond

simply using oBIX on top of CoAP and rather represent a

possible IoT protocol stack.

The main contributions of this paper may be summarized

as follows:

• An overview of different integration styles that can be

used to integrate BAS into the IoT.

• A CoAP and EXI protocol binding for oBIX.

• A mapping from oBIX to CoRE and modification towards

a per-device IPv6 interface for each oBIX object.

• The requirements to define a standardized IoT ontology

comparable to traditional standardized functional blocks

of existing BAS in order to achieve interworking and

improved EXI compression.

As further work we consider to publish the multi-protocol

gateway as open source project and to support further BAS like

BACnet, ZigBee, EnOcean and Wireless M-Bus. Furthermore

we want to investigate service discovery and commissioning

facilities that fit for a large scale system like the IoT, to address

the security and privacy challenges and to close the semantic

gap between IoT oBIX contracts and ontologies.
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