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ABSTRACT
Tra�c routing is a well established optimization problem in
tra�c management. We address here dynamic routing prob-
lems where the load of roads is taken into account dynam-
ically, aiming at the optimization of required travel times.
We investigate ant-based algorithms that can handle dy-
namic routing problems, but su↵er from negative emergent
e↵ects like road congestions. We propose an inverse ant-
based routing algorithm to avoid these negative emergent
e↵ects. We evaluate our approach with the agent-based traf-
fic simulation system MAINS2IM. For evaluation, we use
a synthetic and two real world scenarios. Evaluation re-
sults indicate that the proposed inverse ant-based routing
can lead to a reduction of travel time.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms, Management, Measurement, Experimentation

Keywords
Tra�c simulation, Multiagent-Based Simulation (MABS),
routing, Ant-inspired

1. INTRODUCTION
Tra�c routing is a well established research and optimiza-
tion problem in tra�c management [6]. Most research has
been done for static problems, i.e., settings where the prob-
lem structure does not change. In static problems the rout-
ing decision boils down to find the shortest path between the
start and the goal point. Once a solution has been found for
all routes the optimal ones can be used whenever needed.
These algorithms typically are based on shortest path algo-
rithms, like the well known A* algorithm.

The situation becomes more complex if we regard dynamic
problems. In a dynamic problem, the problem structure
changes while solving the problem. For routing decisions this
implies that not the traveling distance has to be optimized
but the traveling time [1]. Of course, a simple approach is
to assume a fixed average speed that can be used for every
road and to use this in the calculation of the weights of the
graph. It has turned out that this simple approach often
can help, but it also turned out not to be su�cient for roads
which load changes in time [13, 19].

One approach to handle this limitation is to gather data to
enrich the routing graph with time dependent traveling in-
formation. Based on acquired data the traveling speed on
a road is extracted and can be used during route planning.
In this approach, the dynamic problem is reformulated to
a static one which has a larger complexity than the initial
static one, as for each edge in the routing graph, time depen-
dent traveling speed information is available. But it turned
out that the data acquisition takes a lot of e↵ort [13, 19].

Using current trends and technologies like car-2-car com-
munication [14] and autonomic road transportation support
systems [8] cars can be enabled to communicate with each
other, and also with their environment. Therefore, each car
can be seen as an autonomous entity, that has computing



abilities and is able to send and receive information from its
current environment, and to use this information, e.g., for
routing decisions.

Fortunately, ant algorithms can handle dynamic environ-
ments, so if a road is congested the following cars will take a
di↵erent route if the road ahead of them is blocked. But due
to the principle of following other ants in an ant-optimizing
algorithm, these situations will emerge regularly, given a sit-
uation with heavy tra�c, as it can be often found in urban
areas. The emergence of congestions is a negative emergent
behavior [28].

Heavy tra�c is typical for urban areas nowadays. But we
can also make another observation in these areas. There of-
ten exists a number of alternative routes, as well. In this pa-
per, we investigate how to handle dynamic routing problems
in urban areas, with high tra�c and a number of alternative
routes. The goal of our research is to avoid the negative
e↵ects of these emerging congestions while preserving the
positive emergent behavior of ant algorithms for routing in
dynamic environments. Therefore, we will change the inter-
nal reasoning of the cars to navigate to their destinations.
For the evaluation of our approach we use simulation stud-
ies based on an agent-based tra�c simulation system, called
MAINS2IM. In our evaluation, we are comparing our ap-
proach with existing alternative routing approaches.

The rest of the paper is structured as follows. In the next
section we discuss related work especially from the fields of
tra�c simulation and ant-based routing algorithms. Then,
in Section 3, we give a brief introduction into MAINS2IM.
Since we are focusing on routing problems, we will especially
highlight routing methods of MAINS2IM in Section 4. Our
approach of adapting the ant algorithm to make it more
suitable for urban areas, by avoiding negative emergent be-
havior, is described in Section 5. In the subsequent section
we evaluate our approach in a series of simulation studies
and discuss our results. Finally, we conclude and outline
potential future research.

2. RELATED WORK
In the first part of this section, we give an introduction to
related work in the field of tra�c simulation. In the second
part we discuss current research in the field of ant-based
routing algorithms. Thereby, we focus in both subsections
especially on agent-based approaches.

2.1 Traffic Simulation
The modeling of tra�c is a well established field, ranging
back to early work in the first half of the preceding century,
e.g., [17]. Since then, di↵erent models and (later) tra�c
simulations have been proposed. The focuses of those range
from the simulation of huge scenarios, e.g., the road tra�c
in Switzerland [27], using a cellular automaton based model
proposed in [23], to the simulation of very small areas (e.g.,
[5]) with high fidelity tra�c models like, e.g., [30].

Tra�c simulation systems consist of models for road user be-
havior, as well as tra�c demand models and routing meth-
ods. The road model is typically encoded in form of an
annotated graph. The users’ behavior is often described by
their capabilities, their goal(s), and their behavior patterns,

e.g., acceleration patterns. In this work, we focus on routing
methods.

Gehrke and Wojtusiak present an approach for inductive
learning of tra�c predictions in relation to day, time and
weather which leads to a higher tra�c flow in an agent-
based tra�c simulation with agents using the predictions
for route planing [16].

Vasirani and Ossowski present an agent-based approach for
e�cient allocation of road tra�c network with help of an
artificial market [29]. The approach could be shown to be
e�cient in a small scenario but has not yet been tested in a
tra�c simulation system.

A crucial point is the explicit modeling of decision making
of simulated cars [2], respectively the reasoning in the sim-
ulated agents. Gawron presents an iterative algorithm for
route plan optimization towards an equilibrium [15]. In a
first simulation run, each simulated car chooses an optimal
route. Before the next run, a portion of agents re-plan with
help of the travel time knowledge gained from the previously
used roads. This is done repeatedly, until an equilibrium
condition is established. An analogous approach is used by
Raney et al. for TRANSIMS [26]. The simulation has to be
run for about fifty times in order to reach the desired state in
their scenario. Thus, this approach is very time-consuming.

Bazzan and Klügl present an agent-based approach for dy-
namic re-planning [3]. When a car agent a perceives the
occupancy of the next road on its route plan to be higher
than ⌧ , a re-routing mechanism enables a to drive around
the potentially jammed area. The approach leads to a better
overall performance. For simulation, frequently re-routing is
time consuming. Another important aspect is at what time
of the travel the re-planning has to be done. When the next
road on the current route of a is jammed, a re-routing may
have been much better, if done earlier.

2.2 Ant-based Routing Algorithms
As pointed out before, ant-based routing algorithms have
been already investigated for tra�c management [1, 4, 19].
In current work, researchers try to adapt the basic algorithm
to avoid the negative emergent e↵ects outlined before. In the
following we discuss those approaches.

The approach by Alves et al. [1] is based on the equilibrium
theory of tra�c networks, and therefore grounded in game
theory. In this approach, the cars are routed by a central-
ized tra�c control management system. The central traf-
fic management system collects information about the load
dependent changes of the traveling times which are com-
puted by an ant colony optimization method. Therefore,
the ant-based routing is used to create information about
the expected load of roads, to adapt expected traveling time
information in the routing algorithm. In their approach,
cars are controlled; they have no abilities to make decisions.

The need for decentralized decision making in dynamic rout-
ing problems has been pointed out by Narzt et al. [24]. Simi-
lar to our approach it is assumed that cars become smart en-
tities that can communicate with each other and with their
environment. Cars act as ants and leave a pheromone trace



along the way they travel. In the presented approach the
cars use the intensity of the pheromone trace to infer the
tra�c density on this particular section of the road ahead.
Thus, based on this pheromone information the cars can ad-
just their local planning model and adapt the weights of the
edges, used for their routing algorithm, i.e., A*.

The idea of inferring the current tra�c situation from the
pheromone trace has also been suggested by Bedi et al. [4].
In their approach, Bedi et al. discuss an approach for pick-
ing the next edge to travel towards the destination. For
calculating the probability for an edge they combine three
factors: the traveling distance, the pheromone strength and
a random factor. Based on their description, the usage of
their approach focuses the individual routing problem for a
specific road user, who specifies its starting and end point.
With this information and the tra�c infrastructure di↵er-
ent routes are computed iteratively, trying to minimize the
probability that the car will get stuck in a tra�c jam.

As previous authors Krömer et al. [19] also point out the
need for handling dynamic routing problems for tra�c rout-
ing. They also point out that collecting real world data, can
be a complex task, that often has limitations in the amount
of data and the area covered. Krömer et al. present an
approach to avoid the negative emergent behavior in their
routing algorithm. They modify the original ant colony op-
timization algorithm slightly, by introducing a probability
threshold. If a probability of taking an edge becomes larger
than the threshold, e.g., because it has a high pheromone
mark, the probability will be cut to the threshold. Thus,
the probability cannot become larger than the threshold.
By adding this threshold, the authors are able to gain the
advantages of the ant-based routing, but also have a mean to
avoid that the shortest path gets blocked due to heavy usage.
In their experimentation they used realistic road infrastruc-
ture and car behavior patterns. As expected the original
ant algorithm found the shortest path faster, i.e., it could
converge faster to a solution, but tra�c jams occurred. This
e↵ect could be softened using the ant-based routing with the
probability threshold.

3. SIMULATION SYSTEM
The routing algorithms discussed in this paper have been
integrated into the simulation system MAINS2IM (Multi-
modAl INnercity SIMulation). The simulation uses carto-
graphic material from the OpenStreetMap1 initiative in or-
der to automatically generate a simulation graph, leading
to an executable tra�c simulation. The system is built on
the base of the free geographical information system (GIS)
toolkit GeoTools2.

In order to set up a simulation, an OpenStreetMap (.osm)
file is clipped into a user defined map section. The new file
is split into logical GIS layers in relation to their type of ge-
ometry or for rendering purposes (e.g., landscape polygons,
waterways, buildings, points, railways, routes and roads). In
a first step, a basic graph data structure is calculated, which
then is refined by several analysis and correction steps. The
result of this transformation process is a graph with Edge-

1
http://www.openstreetmap.org, accessed 03/02/12

2
http://www.geotools.org, accessed 03/02/12

Informations (EI) representing roads and NodeInformations
(NI) representing the connections between roads, taking into
account urban tra�c circumstances like, e.g., cross-walks,
tra�c lights, roundabouts, speed limits, numbers of lanes
and priorities for the determination of the right of way.

MAINS2IM provides microscopic tra�c models for cars
(passenger cars, trucks and buses), as well as bicycles and
pedestrians. The models are discrete in time and continu-
ous in space. One simulation iteration corresponds to one
second real time.

The road users in the simulation system are modeled by sim-
ple reflex agents. Each driver-car-entity has its individual
driving capabilities, e.g., di↵erent dallying behavior, accel-
eration, maximum velocity or rating for safety distances.
When a situation occurs where multiple cars prevent each
other from passing a crossing due to the right of way rules,
the involved agents are able to abstain from their right of
way and let another one pass the crossing. When a driver-
car-entity has to wait for a certain time in front of a crossing,
it may re-plan and use another route to its original destina-
tion. This is done via usage of the A* search algorithm with
prohibition of the next road of the original route.

The simulation is written in Java and can be executed on a
workstation computer. Detailed descriptions of the simula-
tion system as well as case studies can be found in, e.g., [20,
9, 10] and on the corresponding website www.mainsim.eu.

This work deals with a modification of current routing meth-
ods for tra�c simulations. Thus, the next section describes
the current routing approaches in MAINS2IM.

4. ROUTING METHODS
Currently, MAINS2IM implements three di↵erent routing
methods. Two of them can be used to identify a specific
route from a starting point to a goal and one can be used
to generate probabilistic routing behavior from a specific
starting point. The following subsections 4.1 to 4.3 describe
the approaches and subsection 4.4 discusses the presented
approaches.

4.1 Precalculated Routes
In order to precalculate all possible routes in the simulation
graph, an all-pairs shortest path problem has to be solved. A
reasonable approach would be the Floyd-Warshall algorithm
[7, pp. 629-635]. It solves the problem in O �|V |3�. A dis-
tance function d (NI

a

, NI
b

) estimates the duration of travel
on the edge EI between nodes NI

a

and NI
b

. The algorithm
has one shortcoming for the problem of tra�c routing: It is
not able to take account of the preceding edge on a path.
Consider the situation shown in figure 1.

The Floyd-Warshall algorithm is not capable of suppress-
ing u-turns or turns with an over sized turning angle ↵,
which may be unrealistic. Another method is the repeated
calculation of the Dijkstra algorithm [11], once for each NI.
Overall, this method also leads to computational complexity
of O �|V |3�. During computation of the Dijkstra algorithm,
our method not only stores the preceding NI on a way, but
also the preceding EI and thus, overcomes the aforemen-
tioned problem.



Figure 1: Consideration of turning angles
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Figure 2: Lookup table for NI-ids

The computation of all ways in the simulation graph leads to
the challenge to store them in the simulation system. Con-
sider the simulation of a medium sized city with about 5,000
NIs, leading to about 5, 0002 = 25 · 106 paths. An e�cient
method in space and time is needed to store those paths. In
MAINS2IM a collection of all NIs (NodeInformationCollec-
tion (NIC)) is implemented in form of a list data structure.
The ith element of NIC represents the NI with id i. This
leads to a simple lookup when searching for a NI with a
given ID. The IDs are stored as integer values.

Each NI stores a list of IDs. The ith entry of the list is the
ID of the nextNInext node on the way to a given destination
NIdest with ID i. The time complexity to lookup a path
in the graph is ⇥ (n), where n is the amount of EIs on the
way.

The space complexity of this method is about |NIC|2 ·32bit
(integer) leading to about 95MB to store all paths. Coming
back to figure 1, it is obvious that the amount of di↵erent
IDs stored in the lists is small for each list. Each NI therefor
stores a lookup table (LUT) for the IDs of its neighbors, as
shown in figure 2.

The input of the table is the number of the neighbor and
the result is the corresponding ID. The integer data type
with the smallest amount of bits in Java is used: byte (8
bit). The approach leads to a compression ratio of about
25% without noticeable loss of time.

Note that the procedure is performed three times, because
each basic type of road user (car, bicycle, pedestrian) has dif-
ferent routing characteristics and thus needs its own routes.
Considering the previous example, the required space is re-
duced from about 286MB to about 72MB. The calculations
are performed once and the entire graph data structure with
its computed paths are stored in an external file.

The method of only using precalculated routes is suitable for

static problem settings. But if multiple cars are simulated,
the problem will become a dynamic one, as traveling times
are changed due to other cars. Thus, the approach of pre-
calculating routes leads to tra�c jams in main streets of the
road map, because the shortest paths use the fastest roads
which are frequently selected by many road users. In order
to obtain more heterogeneity in route choice, a probability
based routing is introduced.

4.2 Probability-based Routing
In this approach, the routing of simulated road users is done
probabilistically. Road users traveling under usage of this
method, may have a defined starting position, but the desti-
nation of travel is not predetermined. Tra�c of this kind is
valuable for background tra�c, influencing simulated road
users with calculated routes from a defined source to a de-
fined destination.

The approach proposed in this section is a refinement of the
method stated in [9]. Let ⌦

NI

be the set of EIs, connected
to NI. Each NI of the graph stores a turning probability
function p

t

(EIcurr, EInext), for a road user of type

t 2 {car, bicycle, pedestrian} (1)

coming from EIcurr, giving the probability to choose EInext
as the next EI for travel. The function p

t

holds equation 2
and 3.

p
t

(EIcurr, EIcurr) = 0 (2)
X

EI2⌦NI

p
t

(EIcurr, EI) = 1 8 t, EIcurr (3)

With a given EIcurr, a route through the graph can be ob-
tained via repeated random selection of the next EI from
EIcurr. The function p

t

is computed with help of the pre-
calculated routes from subsection 4.1.

Each NI 2 NIC holds counters for all types t and each
combination EIcurr, EInext 2 ⌦

NI

, initialized with 0. The
routes ⇣

�
NIstart, NIdest

�
between all non-equal pairs of

NIstart to NIdest are identified as lists of NIs and EIs.
Each route ⇣ is analyzed and at each NI 2 ⇣ the correspond-
ing counter for the connection between the current and the
next EI is incremented. This is done for all types of road
users. Afterwards, all counters are normalized, resulting in
p
t

with the conditions shown in equation 2 and 3.

The determination of p
t

has a complexity of O �|NIC|3�,
because of O �|NIC|2� paths and a maximum path length
of O (|NIC|). During simulation, the computation of a path
with n NIs takes ⇥ (n).

Both described methods are not directly capable for respect-
ing dynamic routing features. Thus, the next subsection
discusses a method based on the well-known A* search al-
gorithm.

4.3 A*-based Route Determination
The A* search algorithm is suited to solve the single-pair
shortest path problem in graph data structures. Neverthe-
less, it takes more time to calculate a way using A* search
online than by the other methods described above.



A* search works similar to the Dijkstra algorithm, but uses
a few heuristics to speedup computation, without loss of ac-
curacy. The assumed distance d (NI

a

, NI
b

) may be adjusted
arbitrarily during runtime of the simulation, enabling for dy-
namic3 modification of the routing methods. Di↵erent kinds
of simulated road users may favor di↵erent types of roads,
e.g., one may prefer motorways, the other country roads.
This feature brings more specific characteristic behavior to
road user plans on the cost of computation time.

4.4 Discussion
We have outlined three di↵erent approaches for planning
routes for simulated road users, that have already been im-
plemented in the MAINS2IM system. The first assumes
static travel times for each EI and leads to tra�c overloads
on major roads. The second method is a more dynamic ap-
proach, but without exact steering capabilities, although the
p
t

may be adjusted using a point of attraction, as shown in
[9]. The third approach is appropriate for dynamic rout-
ing with exact start and destination points, but will be no-
ticeable slower in computation time in large scenarios with
thousands of nodes in the graph.

The next section discusses a modification method for the
edge weight function d (NI

a

, NI
b

) in order to overcome the
overloading problems of the precalculated routes.

5. ANT-INSPIRED ROUTING
The idea of ant-colony optimization is to mimic strategies
observed from real ants. Ants leave behind trails of phe-
romones, e.g., when looking for food. When an ant has
to decide, which way to choose, it chooses the way with the
higher pheromone concentration more likely than the others.
These pheromones have a given, typical linear vaporization
rate, i.e., the trace becomes weaker in time. This leads to
the emergent e↵ect, that short routes are found in the en-
vironment. A survey is provided by Dorigo and Blum [12].
It is obvious that this algorithm can be directly applied for
routing decisions, e.g., in tra�c simulation, as done here.

Our approach uses a simplified inverse ant colony optimiza-
tion. It is inverse in the sense that a strong pheromone trace
will influence following cars not to follow their predecessors
but instead to avoid this road, taking a di↵erent route to
their goals.

The basic idea of this ant-inspired routing is that each road
holds a “smell intensity” si. The pheromone trace is used
to indicate the previous usage of a road. The higher si, the
slower a car will be able to drive on the corresponding road,
since the usage of the road is higher, which will slow down
the tra�c on this road. Each EI holds two values EIa

si

and
EIb

si

for the two possible directions of travel on EI (with
direction a: In the course of road, direction b: contrary).

Let length (EI) be the length of the corresponding road in
m and EI

vMax

the speed limit on the road. The distance
estimation function d (NI

a

, NI
b

) between two nodes NI
a

and NI
b

over EI in direction dir is adjusted by a modifica-
tion of the estimated travel velocity on EI, as shown in the

3Dynamic refers to the dynamic change of the distance es-
timation function and not to dynamic replanning.

following equation 4.

d (NI
a

, NI
b

) =
length (EI)

v⇤
(4)

v⇤ =
⇣
1� EIdir

si

⌘
· EI

vMax

The domain of EI
si

is [0 · · · 1], leading to a maximal esti-
mated travel velocity v⇤ of EI

vMax

when there is “no smell”
and a minimal v⇤ = 0, when there is a high“smell intensity”.

In each simulation iteration, each EI has to adjust its values
of EI

si

, as shown in equation 5.

EIdir
si

=
min

�
max

�
EIdir

si

� + # · dens �EIdir
�
, 0
�
, 1
� (5)

The value of EIdir
si

is absorbed by the subtrahend  and
increased by the tra�c density in the direction dir on EI,
scaled by #. The result is bounded to the interval [0 · · · 1].

A road with high tra�c densities results in high concentra-
tions of EI

si

and thus influences cars to avoid the travel
over EI when calculating a route with help of the A* search
algorithm. This should result in more uniformly distributed
tra�c loads upon the road graph and thus shorter times of
travel, because of less intense tra�c jams. We expect that
this approach is especially useful in areas with a number of
di↵erent routing alternatives, and with a high tra�c density.
Therefore, we consider this approach in particular useful for
urban areas, in which routing becomes especially important.

We believe that this approach can be valuable if the “phero-
mone traces” can be stored in the environment, e.g., by the
underlying tra�c management system. Cars that pass the
roads can then read and update the pheromone traces.

6. EVALUATION
The evaluation of the routing methods described above be-
gins with an optimization of the parameters  and #. Af-
terwards, the ant-inspired routing method is evaluated on a
synthetic graph and on real world cartographic material.

6.1 Parameter Optimization
The optimization of  and # is done with the method Simu-
lated Annealing (see, e.g., [22]). We use Simulated Anneal-
ing, because of its good suitability for complex problems and
its ability to avoid being stuck in local optima. The fitness
of a parameter configuration is determined in the urban sce-
nario shown in figure 3.

The performance of each parameter configuration is esti-
mated by the average fitness of five replications. The amount
of simulated cars is held constantly at 400. Whenever a car
reaches its destination, a new one will be generated. Source
and destination points are chosen randomly. After a set-
tlement phase of 900 simulation iterations, a measurement
phase of 3600 counts the amount of cars fit

r

, that have
finished their travel in replication r.

The fitness of a setting is fit = � 1
5

P5
r=1 fitr (negation as

the optimization problem is formulated as a minimization
problem). This fitness function is an implicit estimation of
the driving velocities of simulated cars, because the higher



  


  

Figure 3: Town of Erlensee (13,000 inhabitants), cu-
mulated length of roads: 142km, graph consists of
937 EIs and 714 NIs.

the amount of finished cars, the more e�cient the routing
and the higher the average driving velocity.

The best parameter configuration with fit = �4660.2 in the
described experiment was:

 = 0.28077122867684745 (6)

# = 2.8138856401002688 (7)

6.2 Comparison of Routing Methods
The determined parameter configuration is used for a com-
parison of the ant-inspired approach with the method of
A* search without enhancements and an iterative plan op-
timization approach.

The method of iterative route planning performs the simu-
lation of identical cars several times and an amount of 10%
of cars/agents is allowed to adjust its routing in each run,
according to the travel times the agents have experienced in
the preceding simulation runs. The method leads to a dy-
namic user equilibrium [15, 26], also discussed in Section 2.
The training phase for this method is set to 50 replications,
in order to enable the simulated cars to gain simple knowl-
edge about the tra�c conditions in the simulation area. The
following experiment uses the iterative route planning ap-
proach for comparison. The first experiment for comparison
is done in a synthetical scenario, followd by two experiments
on real world road maps.

6.2.1 Synthetical Graph

For a first test of the obtained values, a highly dynamical
experiment is used: A square lattice graph with 6⇥ 6 NIs.
Each EI has a length of 250m and EI

vMax

= 13, 8m · s�1.



Figure 4: Synthetic graph. Circles show the posi-
tions of tra�c lights.

Each NI with four EIs holds a tra�c light, as shown in
figure 4.

For evaluation, we generate 100 di↵erent settings with ran-
domly generated start and goal positions for road users. Due
to the stochastic nature of the used behavioral model, each
setting is repeated with ten replications.

A car which enters the simulation, starts with velocity 0 m ·
s�1. It waits for a su�cient gap in tra�c and then literally
enters the road and begins acceleration. In the beginning,
every simulated car stands still.

The result of each run is the average travel time of all cars,
that have reached the destination after the settlement phase
of 900 iterations. The measurement phase has a duration
of 3,600 iterations and is extended until the last car has
reached its destination.

Due to the stochastic nature of the used simulation model,
the result of a setting is the average value of the results from
its replications. The amount of cars is held constantly for the
first replication and identical copies of the cars with the same
start and goal positions are used for further replications with
other seed values for the random number generator.

The average travel times per run t
r

are compared. For the
amounts of cars (200, 300, 400), the ant-inspired approach
leads to significant4 reductions in travel time in comparison
to the A* method and exhibits lower spreadings. The val-
ues for t increase with increasing amounts of cars. In the
experiment with 500 cars, the ant-inspired approach su↵ers
from high-value outliers for t, even though it still leads to
the lowest travel times for 49 out of 100 runs. This indi-
cates an problem at very high tra�c densities, potentially

4The statistical software R [25] is used for determination of
significance with help of the t-test using error level ↵ = 0.05.



#cars #runs A* ant iterative

200 100
t = 281.09 t = 224.23 t = 282.97
� = 3.77 � = 2.63 � = 3.95

300 100
t = 294.55 t = 226.38 t = 297.09
� = 3.39 � = 2.52 � = 3.84

400 100
t = 305.91 t = 230.47 t = 307.21
� = 2.75 � = 2.11 � = 2.67

500 100
t = 326.01 t = 327.58 t = 316.56
� = 3.58 � = 45.19 � = 3.35

Table 1: Average travel times t and standard devia-
tion � in the synthetical scenario.

#cars #runs A* ant iterative

200 100
t = 302.55 t = 279.60 t = 268.62
� = 5.28 � = 3.59 � = 3.23

300 100
t = 459.77 t = 287.82 t = 273.16
� = 61.79 � = 4.10 � = 3.11

400 100
t = 656.43 t = 291.70 t = 276.09
� = 32.62 � = 4.48 � = 3.72

500 100
t = 807.42 t = 310.54 t = 283.63
� = 24.48 � = 6.00 � = 4.92

Table 2: Average travel times t and standard devia-
tion � in graph for road map of Erlensee.

an oversteering of #, leading to a total blockade of certain
roads.

6.2.2 Small Real World Scenario

As a next step, we repeat the described experiments in real
world scenarios. 100 start-goal settings with ten replications
per run are performed in the map excerpt, shown in figure 3.
The di↵erent routing methods are compared with identical
start-goal settings for the cars. The results are shown in
figure 5.

The plots show that both, the ant-inspired routing and the
iterative route planning mechanism lead to significant lower
mean travel times for all simulated tra�c densities. The
iterative approach results in shorter travel times than the
remaining approaches. Both, the iterative and the ant-
inspired approach reduce tra�c jams at high tra�c den-
sitites, because of agent experiences on the one hand and
bad weighting of jammed areas during route planning on
the other hand. Table 2 summarizes the results of this ex-
periment.

In order to determine the e↵ects of the di↵erent routing
methods, the results of one run are used for calculation of a
road usage map. In each simulation time step, each car in-
crements the road usage value for the EI it currently drives
on. Figure 6 shows the comparison of the di↵erent routing
methods on the map extract of figure 3. The first row (parts
(a) to (c)) takes road usage values for all three approaches
for determination of the minimum and maximum values in
order to show an overall comparison. The second row (parts
(d) to (f)) scales the values for each separate approach in
order to deliver an insight on the distribution of tra�c for

#cars #runs A* ant iterative

500 50
t = 540.12 t = 554.38 t = 560.13
� = 4.55 � = 4.25 � = 3.62

750 50
t = 651.45 t = 658.24 t = 611.66
� = 10.46 � = 16.37 � = 6.87

1000 50
t = 800.22 t = 809.08 t = 683.88
� = 32.62 � = 4.48 � = 3.72

1500 50
t = 1109.39 t = 1101.61 t = 948.37
� = 14.76 � = 22.05 � = 20.91

Table 3: Average travel times t and standard devia-
tion � in graph for road map of Hanau.

the individual approaches.

Parts (a) to (c) of figure 6 show, that the maximum of road
usage is dominated by the A* method and the ant-inspired
and iterative approach produce less intensive tra�c inten-
sities in these areas. Parts (e) and (f) show that the ant-
inspired and the iterative methods lead to a wider absolute
spreading of tra�c in comparison to the pure A* based rout-
ing, shown in part (d). Again this goes in line with our ex-
pectations, that the inverse ant-based algorithm can avoid
the negative emergent behavior of road congestions, since
the tra�c is more balanced on the di↵erent routes of the
road network. This e↵ect gets facilitated if multiple alter-
native routes exist.

The comparison of the di↵erent methods took place in the
same graph, the optimization was done in section 6.1. The
next step is to take the methods to another road map in
order to test for overfitting of parameter optimization.

6.2.3 Medium-sized City

The medium sized city Hanau am Main (89,000 inhabitants)
with a total length of roads 548km is used for a second exper-
iment. The resulting graph has 4,201 NIs and 5,758 EIs.
The experimental setup remains identically to the preced-
ing experiment, except that on the one hand, the amount of
simulated cars is increased. On the other hand, the number
of start-goal settings per tra�c density is reduced to 50 due
to the increased computational complexity of this scenario.
Table 3 shows the experimental results.

Table 3 exhibits di↵erences to the results of Table 2. The
iterative routing mechanism leads to the lowest values of t
at high tra�c densities. The ant-inspired routing approach
is not beneficial for this scenario. It performs comparable
to the basic A* mechanism. This could be an indicator for
parameter overfitting for the parameters  and # to the road
map, shown in figure 3.

6.3 Discussion
The evaluation has shown that the ant-inspired routing me-
thod can lead to lower average travel times of simulated
cars in a synthetic scenario (section 6.2.1), as well as in a
real world simulation graph (section 6.2.2). Section 6.2.3
did not show advantages of the ant-inspired method over
the A* based or the iterative routing approach. However,
the iterative approach has been integrated as reference only
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Figure 5: Evaluation on a graph for the road map of Erlensee. Horizontal lines show average values.

and not for direct comparison as it is based on individual
“knowledge” of agents.

The ant-inspired method leads to a wider distribution of
tra�c in the simulation area. This is the basic outcome of
the iterative approach. The ant-inspired routing approach
has the advantage that a distribution of tra�c is done with-
out calibration runs. The amount of about 50 calibration
runs, before performing the actual simulation runs is expen-
sive and can be avoided by the approach presented in this
paper. Nevertheless, it has to be mentioned, that the cal-
ibration with 50 runs is not always necessary. It would be
better to do the calibration until the agents plans do not
change any more, as discussed in literature.

In contrast to the approach, presented by Narzt et al. [24]
our approach is not explicitly considering re-planning during
travel. This is due to the focus of MAINS2IM, namely the
simulation of whole cities, taking account of multi modal
tra�c. For such large-scale scenarios, the simulation agents
must not be very complex with respect to computational
e↵ort.

Our approach utilizes the e↵ect that tra�c jams resolve
faster, when the amount of cars filling the waiting line be-
hind the beginning of the jam decreases [21]. This is achieved
by the ant-inspired routing mechanism as newly planned
routes avoid road segments with high tra�c.

7. SUMMARY AND PERSPECTIVES
In this paper, we have discussed the need for future rout-
ing approaches, especially in urban environments where a
number of alternative routes exist and tra�c is dense. In
these environments a dynamic routing algorithm could help

to reduce travel times. We have focused on routing ap-
proaches using the ant-optimization paradigm. While ant-
based optimization algorithms o↵er a number of interest-
ing features, like fast convergence to the shortest path, and
self-stabilization in case of disruptions, there are some nega-
tive emergent e↵ects. In particular this kind of optimization
will produce congestions, as ants follow the most intense
pheromone trail, which leads to overload situations on the
road network.

To maintain the aforementioned positive e↵ects of ant-based
routing algorithms we have modified the conventional ant-
based optimization approach, to have a balancing e↵ect in
the road selection. This is done with help of a simple modi-
fication of the distance function of the A* search algorithm.
We have tested our modified routing algorithm in the agent-
based tra�c simulation systemMAINS2IM. Within this sim-
ulation system we could show the positive e↵ects of our
modification in a grid network. Since MAINS2IM is able to
generate a simulation model out of publicly available map
information, we are able to transfer these results from a
theoretical setting into settings based on real world map ex-
cerpts. The method’s parameters have been optimized for
a small scenario and benefits for another scenario have not
been observed. This could indicate parameter overfitting
and needs to be investigated in the future.

By using an agent-based tra�c simulation system, we are
able to model each road user, with a di↵erent set of at-
tributes, leading to di↵erent characteristics, which allows us
to investigate richer models. In our particular research we
have applied local reasoning capabilities that cars can have
in taking the routing decisions locally. This goes in line
with the trend that cars become smart active entities in the
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Figure 6: Comparison of road usage ratios (white: low usage; black: high usage). First row: Same leveling
for all methods, second row: individual leveling for each method.

overall tra�c management infrastructure.

The smell intensity values of the simulated roads are de-
pendent on the time dependent tra�c densities of the cor-
responding roads. The transferability from density to flow
needs to be investigated in the future, because it is easier
to measure tra�c flow than tra�c densities in real tra�c
scenarios. One aspect for future work could be to identify
a set of good measurement points to assess the tra�c situa-
tion. While the simulation allows us to have an easy access
to the overall tra�c situation, this is not possible for real
tra�c management systems. Those systems often have only
a limited view, defined by a set of measuring and monitor-
ing points. Based on this local view a global view has to be
estimated. Therefore, the identification of measuring points
becomes of special interest, to get a good estimation of the
global state by local observations.

The described approach has not lead to benefits in a medium
sized city. This may have two reasons: overfitting of the pa-
rameters for the small scenario or too long-ranging agent
plans. If overfitting was the actual reason, the approach
would not necessarily lead to advantages over the itera-
tive routing approach with respect to computational time as
situation-dependent calibration would also be needed. All
mentioned routing approaches base on the o✏ine A* search
algorithm. Future research needs to investigate its use for
real-time path finding algorithms like RTA* [18] in order to
use the dynamics of the pheromone concentrations during
the trips of the simulated cars for a dynamic routing with

replanning. This should lead to better results in huge sce-
narios.

The ant-based routing can be studied in the simulation set-
ting to investigate its potentials. As we have outlined before
it bases on assumptions about ongoing technology trends,
and therefore could be used also for travel time optimization
in real world scenarios. The method needs to be investigated
for robustness against influences from pedestrians and bicy-
cles and local public transport, in the future. The e↵ect on
gas consumption and CO2 emissions can be identified with
MAINS2IM and thus, will be a field of study for further
investigations of the ant-based approach.
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