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Rotation–Covariant Texture Learning Using
Steerable Riesz Wavelets

Adrien Depeursinge, Antonio Foncubierta–Rodriguez, Dimitri Van De Ville, and Henning Müller

Abstract—We propose a texture learning approach that ex-
ploits local organizations of scales and directions. First, linear
combinations of Riesz wavelets are learned using kernel support
vector machines. The resulting texture “signatures” are modeling
optimal class–wise discriminatory properties. The visualization
of the obtained signatures allows verifying the visual relevance
of the learned concepts. Second, the local orientations of the
signatures are optimized to maximize their responses, which
is carried out analytically and can still be expressed as a
linear combination of the initial steerable Riesz templates. The
global process is iteratively repeated to obtain final rotation–
covariant texture signatures. Rapid convergence of class–wise
signatures is observed, which demonstrates that the instances
are projected into a feature space that leverages the local
organizations of scales and directions. Experimental evaluation
reveals an average classification accuracies in the range of 97%
to 98% for the Outex TC 00010, the Outex TC 00012, and the
Contrib TC 00000 suite for even orders of the Riesz transform,
and suggests high robustness to changes in images orientation
and illumination. The proposed framework requires no arbitrary
choices of scales and directions and is expected to perform well
in a large range of computer vision applications.

Index Terms—Texture classification, feature learning, steerabil-
ity, rotation-covariance, illumination-invariance, wavelet analysis.

I. INTRODUCTION

LOCAL organization of scale and direction is key for
visual pattern discrimination [2]. This property has been

fueling research activities in image processing and pattern
recognition since their early days [5, 20, 23, 28, 53, 61]. Nev-
ertheless, approaches from computer vision are still lacking
to elegantly leverage this fundamental property. A proper
characterization of the local organizations of scales and di-
rections raises several challenges. First, the analysis of scale
and direction information should not be carried out sepa-
rately since the co–occurrences of several scales and various
directions are often key discriminating properties. Second,
accurate characterizations of the Nyquist domain (i.e., scale
or spatial frequency) and the angular domain (i.e., directions)
are required to catch subtle inter–pattern differences. Third,
the notion of locality is of leading importance to avoid the
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drowning of relevant pattern properties. Two patterns that
are visually very different can have identical global distri-
butions of scales and directions. The multiresolution theory
of the wavelet transform provides an elegant solution to the
locality problem for scale characterization [35]. However, less
convincing solutions are available for comprehensive local
direction characterization. Separable wavelets are biased along
the vertical and horizontal directions [56]. The majority of
texture analysis approaches (e.g., gray–level co–occurrence
matrices (GLCMs), run–length encoding (RLE), oriented fil-
terbanks and wavelets (Gaussian, Gabor, Leung–Malik (LM),
Maximum Response (MR) [6, 32, 42, 45, 60], non–separable
wavelets, and histograms of oriented gradients (HOG) used
in scale–invariant feature transform (SIFT) [34]) all require
arbitrary choices of directions for image analysis. A common
practice is to explore directions by uniformly sampling the
angular domain with a typical step of 45◦ to span 4 directions
in 2–D. While providing a comprehensive characterization
of the directions in a neighborhood of radius r = 1, the
amount of discarded pixels increases quadratically with r as
(2r+1)2−8r−1. Local binary patterns (LBP) [39] yield local
descriptions of multiple directions using the pixel sequence
along perimeters of radius r. However, they do not come with
a multiresolution framework and finding appropriate values of
r requires optimization. Several researchers extended wavelet
theory to tackle this issue. Brushlets [36], curvelets [4],
ridgelets [13] and contourlets [11, 41] were introduced as
approaches for comprehensively partitioning the angular space
for neighborhoods of any radius. An interesting alternative is
to use steerable filterbanks, allowing a continuous characteri-
zation of the directions [15, 49]. Steerable filterbanks allow ob-
taining filter coefficients at any arbitrary local orientation from
a linear combination of the basis filters; the linear weights can
be determined analytically. It was used with wavelet filterbanks
(e.g., the steerable pyramid [18, 50]) enabling multiscale and
multi–orientation analysis with infinitesimal angular precision.

In order to recognize identical pattern instances that have
different local orientations, rotation invariant or covariant
features are required. Invariant features do not vary when
the input is transformed, while covariant ones have a bilinear
relationship with respect to a transformation of the input. A
common practice to obtain rotation–invariance is to sum the
outputs of the operators over all directions. Rotation–invariant
convolutional operators can be obtained with isotropic func-
tions (e.g., [58] or the Schmid (S) filter [47]). Unfortunately,
invariant approaches entail the risk of missing important di-
rectional properties (i.e., local anisotropy). Rotation–covariant
features allow keeping local directional information while nor-
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malizing the operators’ outputs over the instances. Rotation–
covariant LBPs are obtained by using “uniform” circular pixels
sequences that are rotation–invariant [39]. Rotation–covariant
SIFT (i.e., RIFT [31]) measures HOG orientations relatively
to the local dominant gradient orientation. However, the ex-
traction of both uniform sequences and HOG are exhaustive
and do not specifically model discriminative patterns. They
also require arbitrary choices of the radius of the circular
neighborhoods. Rotation covariance using steerable filters has
also been proposed [8, 12]. In previous work, we locally
aligned the first template of steerable Riesz wavelets to obtain
rotation–covariant texture features [8]. Such a template models
N th–order directional derivatives and has a strong angular
selectivity. A limitation of this approach is that this template
does not model the local organization of the directions as it
only seeks the one prevailing.

Several researchers proposed to learn filters from data, aim-
ing at modeling local organizations of scales and directions [9,
17, 40, 44, 46, 48, 54], but few of them are coupled with a
rotation–covariant framework. In this work, we propose iter-
ative rotation–covariant texture learning using steerable Riesz
wavelets as an effective way of exploiting local organizations
of scales and directions of visual patterns. In a first step,
optimally discriminative texture signatures (i.e., in the sense of
structural risk minimization [59]) are built from the data. N th
order Riesz filterbanks constitute texture dictionaries, from
which the richness and angular selectivity is controlled by
the order N of the transform. Optimal linear combinations
of the multiscale Riesz templates are obtained using support
vector machines (SVM) for a given one–versus–all (OVA)
classification task, which does not make assumptions on scales
and directions. Class–wise texture signatures are obtained,
allowing for visual assessment of the learned texture patterns.
In a second step, the orientations of the learned signatures
are locally oriented to maximize their response, which can be
obtained analytically as a linear combination of the initial co-
efficients. Starting from the coefficients of the locally oriented
signatures, the whole procedure is repeated iteratively until
convergence of the texture signatures.

II. MATERIAL AND METHODS

Our approach for iterative rotation–covariant texture learn-
ing using steerable Riesz wavelets is described in this section.
The Riesz transform and associated filterbanks are explained
in Section II-B. The iterative texture learning framework and
the validation scheme used to evaluate it are described in
Sections II-C–II-D and II-F–II-G respectively.

A. Notations

A generic d–dimensional signal f indexed by the
continuous–domain space variable x = (x1, . . . , xd) ∈ Rd
is considered. The d–dimensional Fourier transform of f is
noted as:

f(x)
F←→ f̂(ω) =

∫
Rd
f(x)e−j〈ω,x〉dx1 . . . dxd,

with ω = (ω1, . . . , ωd) ∈ Rd.

N = 1 G ∗ R(0,1) G ∗ R(1,0)

N = 2 G ∗ R(0,2) G ∗ R(1,1) G ∗ R(2,0)

N = 3 G ∗ R(0,3) G ∗ R(1,2) G ∗ R(2,1) G ∗ R(3,0)

Fig. 1. Templates corresponding to the Riesz kernels convolved with a
Gaussian smoother for N=1,2,3.

B. Steerable Riesz filterbanks

The Riesz transform is a multidimensional extension of the
Hilbert transform, which maps any function f(x) to its har-
monic conjugate and is a very powerful tool for mathematical
manipulations of periodic signals [52]. For a 2–D signal f(x),
the N + 1 components of the N th–order Riesz transform RN

are defined as:

RN {f} (x) =


R(0,N) {f} (x)

...
R(n,N−n) {f} (x)

...
R(N,0) {f} (x)

 , (1)

with n = 0, 1, . . . , N . A singular kernel R(n,N−n) {f} (x) is
defined in the Fourier domain as:

R(n,N−n) {f} (x)
F←→ ¤�R(n,N−n) {f}(ω),

where ¤�R(n,N−n) {f}(ω) =

 
N

n!(N − n)!

(−jω1)n(−jω2)N−n

||ω||N
f̂(ω),

(2)

with ω1,2 corresponding to the frequencies along the two im-
age axes x1,2. The multiplication with jω1,2 in the numerator
corresponds to partial derivatives of f and the division by
the norm of ω in the denominator makes that only phase
information is retained. Therefore, RN yields allpass1 filter-
banks with directional (singular) kernels R(n,N−n) [56]. The
Riesz transform commutes with translation, scaling or rota-
tion. The orientation of the Riesz components is determined
by the partial derivatives in Eq. (2). The first–order Riesz
transform corresponds to a phase–only gradient. The higher–
order versions as specified in (2) are obtained by regrouping
the 2N Riesz filters into N + 1 components by commutativity
of convolution (e.g., ∂2/∂x∂y is equivalent to ∂2/∂y∂x). The
Riesz kernels R(n,N−n) convolved with Gaussian kernels for
N=1,2,3 are depicted in Fig. 1.

The Riesz filterbanks are steerable [15, 56], which means
that the local response of each component R(n,N−n) of an
image f(x) rotated by an arbitrary angle θ can be derived

1Except for the DC component.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 2013 3

Fig. 2. Example of the construction of a texture signature Γ8
c using a linear

combination of the Riesz templates R(n,N−n). Γ8
c is visually similar to the

essential “stitch” of the pattern.

analytically from a linear combination of the responses of all
components of the filterbank using a steering matrix Aθ as:

RN
{
fθ
}

(0) = AθRN {f} (0). (3)

The derivation of Aθ is made explicit in Appendix A. Multi-
scale versions of these filterbanks are obtained by coupling the
Riesz transform with Simoncelli’s multi–resolution framework
based on isotropic band–limited wavelets [57].

C. Texture signature learning

Qualitatively, the first Riesz component of even order cor-
responds to a ridge profile whereas for odd ones we obtain
an edge profile, but much richer profiles can be obtained by
linear combinations of the different components [9].

In order to optimally exploit the richness of the feature
detectors encompassed in the Riesz components for a given
pattern classification task, an appropriate weighting scheme
of the energies of the responses of the Riesz components
E
(
R(n,N−n) {f} (x)

)
is required. The goal is to build an

optimal texture signature ΓNc of the class c (versus all) from
a linear combination of the Riesz components as:

ΓNc = wTRN

= w1R(0,N) + w2R(1,N−1) + · · ·+ wN+1R(N,0),
(4)

where w contains the weights of the respective Riesz com-
ponents. A multiscale texture signature is obtained as an
extension of Eq. (4) with multiscale Riesz filterbanks [9] as:

ΓNc = w1

Ä
R(0,N)

ä
s1

+ w2

Ä
R(1,N−1)

ä
s1

+ . . .

+wJ(N+1)

Ä
R(N,0)

ä
sJ
,

(5)

where sj , j = 1, . . . , J is the scale index. Scale–wise sig-
natures ΓNc,j can be obtained when using only weights and
corresponding Riesz templates at the scale j. An example of
the construction of a texture signature Γ8

c for a given texture of
class c, order N = 8 and scale j = 1 is illustrated in Figure 2.

Fig. 3. Expression of the weights w using the support vectors (in black)
found in higher dimensional kernel space (see Eq. (9)).

Then l2–norm support vector machines (SVM) are used to
find the optimal weights wT = (w1 . . . wN+1) in the sense of
structural risk minimization [22, 59] as:

min
w̃,ξ,b

{
||w̃||2

2
+ C

m∑
i=1

ξi

}
subject to

yi(w̃
Tφ(xi)− b) ≥ 1− ξi, ξi ≥ 0,

(6)

where ξi are the slack variables of the soft margin, C is the
cost of the errors, xi are the pattern instances i = 1, . . . ,m
expressed in terms of the energies of the Riesz components
with yi being their corresponding labels, and φ(xi) a function
that maps each instances to a higher dimensional space. The
following dual problem equivalence is used to solve Eq. (6):

min
α

ß
1

2
+αTQα− eTα

™
subject to

yTα = 0, 0 ≤ αi ≤ C,
(7)

where e = [1, . . . , 1]T is a vector of ones, Q is an m × m
positive semidefinite matrix as Qi,j = yiyjK(xi,xj), and
K(xi,xj) = φ(xi)

Tφ(xj) can be any positive definite kernel
function. The primal–dual relationship yields the weights w̃
from the support vectors in the high–dimensional kernel space:

w̃ =
m∑
i=1

yiαiφ(xi). (8)

However, w̃ cannot be used in Eqs. (4) or (5), because it is
in the higher dimensional space determined by the mapping
function φ(x) of the kernel. Therefore, the expression of
weights w in the initial feature space is obtained from support
vectors (i.e., αi > 0 in Eq. (8)) as:

w =
m∑
i=1

yiαixi. (9)

A graphical representation of the expression of w in the
initial space of the Riesz component is shown in Fig. 3. The
contribution of each Riesz component is determined by the
weight that its corresponding energy level received in Eq. (9).
The one–versus–all (OVA) approach is used for multiclass
classification (i.e., class c versus all other c̄).
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D. Iterative texture learning and discrimination

The cornerstone of our approach is to locally align the
learned texture signatures to maximize their response. We
show that this can be done analytically and the expression
of the rotated signatures remains a linear combination of the
initial Riesz templates. This allows to iteratively derive texture
signatures by learning a new signature ΓNc,k+1 in the space
spanned by the maximal responses of ΓNc,k.

1) Steering texture signatures: By combining Eqs. (3)
and (4), the response of a signature ΓNc rotated by an arbitrary
angle θ can be derived analytically as:

ΓN,θc = wTAθRN . (10)

The expression of ΓN,θc can still be expressed as a linear
combination of the initial Riesz templates RN .

2) Iterative signature learning: For each iteration k + 1, a
new texture signature ΓNc,k+1 is learned in the feature space
spanned by the maximal responses of the steered texture
signature ΓNc,k over θ. The dominant orientation θdom of ΓNc,k
at the position xp is

θdom(xp) = arg max
θ∈[0,π]

(
wT
kA

θRN {f}

)
(xp). (11)

A matrix Θ(x) of all angles is obtained for all positions xp.
Riesz templates from all scales are steered together using one
unique multiscale angle matrix Θj(x), which contains local
angle values from scale j maximizing the magnitude of ΓNc,j .

E. Summary

Our approach for iteratively learning the texture signature
ΓNc of a given class c versus all others c̄ is summarized
in Figure 4. All training examples are first represented in
terms of the energies of the multiscale Riesz templates as
E
(
R(n,N−n) {f} (x)

)
. An initial texture signature is learned

ΓNc,1 for the class c using the SVM weighting scheme described
in Eq. (4) and (9). The local orientations of this initial signature
are then optimized to maximize the local magnitude of ΓNc,1,
which reorganizes the feature space spanned by the energies
of the responses of the Riesz templates. This procedure is
repeated K times to obtain a final rotation covariant texture
signature ΓNc,K . As soon as ΓNc,K have been learned for each
class, the coefficients from all images are iteratively rotated
to locally align each signature ΓNc,K . The coefficients are con-
catenated to constitute the final feature space of dimensionality
(N + 1)× J ×Nc, where Nc is the total number of classes.

F. Datasets

We evaluated the proposed framework using both the Outex
database [37] and the Brodatz collection of textures [38]. Test
suites designed for extensively testing the rotation–invariant
properties of the algorithms exist for both datasets. The
test suites come with pre–defined training and testing sets,
which allows for direct performance comparisons between ap-
proaches (i.e., identical validation methods). The cardinalities
of the classes are balanced both in the training and test sets for

Fig. 4. Flowchart of the iterative approach to learn the texture signature ΓN
c

of the class c versus all others c̄.

all problems. The test suites for Outex and Brodatz are Ou-
tex TC 00010, Outex TC 00012 and Contrib TC 000002.

1) Outex TC 00010 and Outex TC 00012: Outex is a
publicly available set of real textures photographed with con-
trolled illumination conditions for the experimental evaluation
of texture classification algorithms. It has recently been used
by several studies on texture recognition [1, 14, 16, 19, 21, 24–
27, 29, 30, 33, 39, 42, 43, 51]. It consists of 24 texture classes
with pronounced directional structures. For each class, the
underlying texture patterns are roughly uniform over the whole
initial images of size 538×746, although gray–scale variations
caused by color variations of the photographs exist. Three dif-
ferent color spectra were used for image capture to evaluate il-
lumination invariance of approaches: 2300 Kelvin (K) horizon
sunlight denoted as “horizon”, 2856 K incandescent denoted
as “inca”, and 4000 K fluorescent tl84 denoted as “tl84”. Each
texture sample was captured using nine rotation angles (0◦, 5◦,
10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦) to focus on the rotation–
invariant properties of the approaches. The full images were
divided into 128× 128 non–overlapping blocks, leading to 20
texture instances per class. Texture instances for each class are
depicted in Fig. 5. The Outex TC 00010 test suite has a total
of 4320 (24 × 20 × 9) image instances of illuminant “inca”.
The training set consists of the 480 (24 × 20) non–rotated
images and the remaining 3840 (24 × 20 × 8) images from
8 orientations are constituting the test set. Outex TC 00012
includes two subproblems: P 000 and P 001. Both problems
use the same training set as in Outex TC 00010 (i.e., 24×20
non–rotated images of illuminant “inca”). The test sets consist
of all samples captured using illuminant “tl84” for P 000 and
“horizon” for P 001 and contains 4320 images.

2) Contrib TC 00000: The Contrib TC 00000 consists of
16 texture classes from the Brodatz album [3] depicted in
Fig. 6. For each texture class, there were eight 256 × 256
source images, of which the first was used for training the
classifier, while the other seven images were used for testing.
180× 180 images of rotated textures were created from these
source images using bilinear interpolation. The training set
contains 484 16× 16 subimages from rotation angles 0◦, 30◦,
45◦ and 60◦ of the first Brodatz images for each class. The
total number of subimages in the training set is 7,744. The
small size of the training samples increases the difficulty of
the classification task [39]. The test set is composed of 42

2http://www.outex.oulu.fi/, as of 20 October 2013.
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1) canvas001 2) canvas002 3) canvas003 4) canvas005 5) canvas006 6) canvas009 7) canvas011 8) canvas021

9) canvas022 10) canvas023 11) canvas025 12) canvas026 13) canvas031 14) canvas032 15) canvas033 16) canvas035

17) canvas038 18) canvas039 19) tile005 20) tile006 21) carpet002 22) carpet004 23) carpet005 24) carpet009

Fig. 5. 128× 128 blocks from the 24 texture classes of the Outex database.

1) canvas 2) cloth 3) cotton 4) grass 5) leather 6) matting 7) paper 8) pigskin

9) raffia 10) rattan 11) reptile 12) sand 13) straw 14) weave 15) wood 16) wool

Fig. 6. 16 Brodatz texture classes of the Contrib TC 00000 test suite.

180 × 180 images from rotation angles 20◦, 70◦, 90◦, 120◦,
135◦ and 150◦ of the other seven Brodatz images for each
class. The total number of images in the test set is 672.

G. Experimental setup
OVA SVM models using Gaussian kernels as K(xi,xj) =

exp(
−||xi−xj ||2

2σ2
k

) are used both to learn texture signatures and
to classify the texture instances in the final feature space
obtained after k iterations. A number of scales J = 6
was used to cover the whole spectrum of the 128 × 128
subimages in Outex and J = 3 for covering the spectrum of
16 × 16 subimages in Contrib TC 00000. The angle matrix
that maximizes the response of the texture signature at the
smallest scale Θ1(x) (see Eq. (11)) is used to steer Riesz
templates from all scales. The dimensionality of the initial
feature space is J(N + 1). Every texture signature ΓNc,K is
computed using the texture instances from the training set.
The coefficients from all instances are rotated to locally align
each signature ΓNc,K and are concatenated to constitute the final
feature space. The dimensionality of the final feature space is
J × (N + 1) × Nc. OVA SVM models are trained in this
final feature space using the training instances. The remaining
test instances obtained are used to evaluate the generalization
performance. All data processing was performed using MAT-
LAB R2012b (8.0.0.783) 64–bit (glnxa64), The MathWorks

Inc., 2012. The computational complexity is dominated by the
local orientation of ΓNc in Eq. 11, which consists of finding the
roots of the polynomials defined by the steering matrix Aθ.
It is therefore NP–hard (Non–deterministic Polynomial–time
hard), where the order of the polynomials is controlled by the
order of the Riesz transform N .

III. RESULTS

The performance of our approach is demonstrated with
the Outex and the Brodatz databases. The performance of
texture classification is first investigated in Section III-A.
The evolution and the convergence of the texture signatures
ΓNc,k through iterations k = 1, . . . , 10 is then studied in
Section III-B for the Outex TC 00010 test suite.

A. Rotation–covariant texture classification

The rotation–covariant properties of our approach are eval-
uated using Outex TC 00010, Outex TC 00012 and Con-
trib TC 00000 test suites. The classification performance
of the proposed approach after the initial iteration (k=1)
is compared with two other approaches that are based on
multiscale Riesz filterbanks. As a baseline, the classification
performance using the energy of the coefficients of the initial
Riesz templates was evaluated. Since the cardinality of the
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TABLE I
AVERAGE Ac OBTAINED WITH THE LOCAL ORIENTATION MAXIMIZATION OF ΓN

c,1 . THE PERFORMANCE OF EVEN AND ODD ORDERS IS COMPARED.

Outex TC 00010 Outex TC 00012 (P 000) Outex TC 00012 (P 001) Contrib TC 00000
Āc for N = 2, 4, 6, 8, 10. 98± 0.7 97.2±0.7 98± 0.4 98.1±4.2

Āc for N = 1, 3, 5, 7, 9. 94.4±0.7 93.6±0.6 95.1±0.4 89.9±1.8

Āc for N = 1, . . . , 10. 96.2± 2 95.4± 2 96.6±1.6 94± 5.3
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Fig. 7. Classification performance with the Outex TC 00010 test suite. The
two rotation covariant approaches are performing much better than using
the initial Riesz coefficients. The local orientation maximization of ΓN

c,1

outperforms the local orientation of the first Riesz template R(0,N) as
proposed in [8]. A maximum Ac of 98.4% is reached with N = 8.

classes are balanced, the classification accuracy Ac is used as
a performance measure of the methods. All performances are
summarized in Table I.

1) Outex TC 00010: The classification performance for
orders N = 1, . . . , 10 is shown in Fig. 7. The performance
using the energy of the coefficients that are maximizing the
response of the first Riesz template (i.e., R(0,N)) at the
smallest scale was also evaluated as a first rotation–covariant
approach [8]. An average Ac of 96.2 ± 2% is obtained with
N = 1 . . . 10 and the local orientation maximization of ΓNc,1.
A maximum Ac of 98.4% is reached with N = 8.

2) Outex TC 00012: The classification performance for
orders N = 1, . . . , 10 is shown in Fig. 8. Average Ac of
95.4 ± 2% (P 000) and 96.6 ± 1.6% (P 001) are obtained
with N = 1 . . . 10 and the local orientation maximization of
ΓNc,1. Maximum Ac of 97.8% (P 000, N = 10) and 98.4%
(P 001, N = 8) are reached.

3) Contrib TC 00000: The classification performance for
orders N = 1, . . . , 10 is shown in Fig. 9. An average Ac
of 94 ± 5.3% is obtained with N = 1 . . . 10 and the local
orientation maximization of ΓNc,1. A perfect classification of
the test set (Ac = 100%) is reached for orders N = 4, 6, 8, 10.

B. Convergence and iterative evolution of ΓNc,k

The visual appearance and convergence of the texture signa-
tures ΓNc,k is investigated using the Outex TC 00010 test suite.
The assumption is made that after a given number of iterations
K, ΓNc,k will converge to a final template representing the
essential “stitch” of the texture class. The evolutions of Γ8

c,k for
classes “6) canvas009” and “15) canvas033” are represented in
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Fig. 8. Classification performance with the Outex TC 00012 test suite
for P 000 and P 001. Similarly to Outex TC 00010, the local orientation
maximization of ΓN

c,1 performs much better than using the initial Riesz
coefficients for both problems. Maximum Ac of 97.8% (P 000, N = 10)
and 98.4% (P 001, N = 8) are reached, which suggests high robustness to
illumination changes of the proposed approach.
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Fig. 9. Classification performance with the Contrib TC 00000 test suite.
The importance of the rotation–covariance of the operators is highlighted
once more, where the local orientation maximization of ΓN

c,1 also performs
much better than using the initial Riesz coefficients. A perfect classification
(Ac = 100%) is reached for orders N = 4, 6, 8, 10.

Figures 10 and 11, respectively. The convergence is assessed
as the evolution of ||wk−wk+1||

||w1|| . The average convergence of
all classes is shown in Fig. 12.

IV. DISCUSSIONS AND CONCLUSIONS

We developed a texture learning framework that leverages
a key property of visual pattern discrimination: the local or-
ganizations of scales and directions. Localized comprehensive
characterizations of scales and directions are enabled using
steerable Riesz wavelets. Class–wise templates are learned
from the data: discriminative combinations of scales and direc-
tions are revealed from one–versus–all SVMs. The local ori-
entation of the obtained templates or “signatures” is optimized
to maximize their response, which is carried out analytically
with linear combinations of the initial Riesz templates. The
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Fig. 10. Evolution and convergence of Γ8
c,k for class “6) canvas009” for scales j = 1, 2, 3 (Outex TC 00010). The distribution of scale–wise weights for

k = 1 and scales j = {1, . . . , 6} are {12.5%, 32.5%, 32%, 11.5%, 6.2%, 5.2%}. The signature is initialized as a ridge detector profile, which quickly
evolves and converges to a dot detector for the smallest scale (i.e., j = 1) and a ridge detector for higher significant scales (i.e., j = 2, 3). This is in
accordance with the discriminative properties of the texture class, which is characterized by vertical lines of dots.

Fig. 11. Evolution and convergence of Γ8
c,k for class “15) canvas033” for scales j = 1, 2, 3 (Outex TC 00010). The distribution of scale–wise weights

for k = 1 and scales j = {1, . . . , 6} are {17.1%, 41.1%, 11.4%, 20.1%, 4.3%, 6.1%}. The associated signature oscillates from one iteration to another
between a checkerboard and a ridge detector.
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Fig. 12. Average convergence of Γ8
c,k for all 24 classes (Outex TC 00010).

The total range between minimum and maximum values is filled with light
gray and the darker area marks the standard deviation.

global process is iteratively repeated based on the feature space
resulting from the previous iteration.

Figure 12 shows the rapid convergence of the signatures
for all classes of the Outex TC 00010 test suite, which
demonstrates that our approach is able to project texture
instances into a locally rotation–covariant feature space after
a small number of iterations. Both signatures and convergence
behavior are stable when varying the SVM parameters (i.e.,
C and σk), despite the fact that there is no guarantee of
convergence to the global optimum. However, preliminary
experiments using a linear kernel did not allow a systematic
convergence of the signatures, which highlights the need for
non–linear separation of OVA configurations. Other feature
weighting schemes in Eq. (4) will be investigated in future
work. The analysis of the iterative evolution of the signatures
for classes “6) canvas009” and “15) canvas033” is shown in
Figures 10 and 11, respectively. A very quick convergence
is observed for class 6). The signature is initialized as a
ridge detector profile, which quickly evolves and converges
to a dot detector for the smallest scale (i.e., j = 1) and a
ridge detector for higher significant scales (i.e., j = 2, 3).
This is in accordance with the discriminative properties of
the texture class, which is characterized by vertical lines of
dots. The convergence is slightly slower for class 18). Initiated
as a checkerboard detector, the signature evolves towards a
mix of a dot and line detector, which are both present in
the texture instances of class 18). Similar texture properties
are found in class 15), where checkerboard–like patterns and
filamentous structures coexist. It can be observed that the
associated signature oscillates from one iteration to another
between a checkerboard and a ridge detector and hardly
converges. Future work will investigate the use of several
signatures per class to allow for better characterizations of
classes with several heterogeneous distinct patterns [7].

As shown in Fig. 7, we found excellent and stable over-
all classification performance for N = 1, . . . , 10 for Ou-
tex TC 00010, Outex TC 00012 (P 000 and P 001) and
Contrib TC 00000. The importance of rotation covariance is
highlighted, where the alignment of ΓNc,k achieves much better
performance when compared to the initial Riesz coefficients.

Fig. 13. Illustration of edge characterization with 1st and 2nd Gaussian
derivatives in 1D. Top: Heaviside function, middle: 1st (dashed) and 2nd
Gaussian derivatives and bottom: convolutions of the Gaussian derivatives
with the Heaviside function. The second (i.e., even) order allows more accurate
characterization of edges than first (i.e., odd) one.

The performance obtained with the initial Riesz coefficients
in both problems of Outex TC 00012 is slightly higher when
compared to Outex TC 00010, because the 480 unrotated
images do not require rotation–invariance of the descriptors.
The importance of aligning structures (i.e., learned signatures)
that correspond to the data when compared to generic tem-
plates is demonstrated, where aligning ΓNc,k performs better
than aligning R(0,N) for all orders with Outex TC 00010.
This is observed even when R(0,N) has a very strong angular
selectivity with high orders of the Riesz transform. In Table I,
it is observed that even orders are performing better than
odd ones for all datasets, which can be explained by the fact
that even orders allow more accurate characterization of edges
than odd ones [49]. This is demonstrated in Fig. 13 with first
and second Gaussian derivatives. The concatenation of even
and odd orders (i.e., N and N − 1) will be investigated in
future work, which will allow to model both symmetric and
antisymmetric functions [55].

Even orders N ≥ 4 enable sufficient flexibility to learn
distinctive texture signatures (see Figures 7, 8 and 9). A perfect
classification (Ac = 100%) is reached with N = 4, 6, 8, 10
for Contrib TC 00000. The texture classes from the Brodatz
album in Contrib TC 00000 are more homogeneous that in
Outex, where some classes clearly contain two or three visual
concepts. The best performance is achieved with N = 8
for Outex TC 00010, which yields a confusion matrix that
is almost diagonal. The majority of the errors are resulting
from confusion between classes 3) and 14), 19) and 20), as
well as between classes 22) to 24). Locally aligning signatures
from large scales should reduce the confusions between 19)
and 20), as well as 22) to 24), where the local structure is
similar and the discriminative properties are occurring only
at large scales. The proposed approach does not guarantee
that the signatures converge to a global optimum. However,
the multiscale structure (i.e., coarser scales) fosters the con-
vergence towards a solution based on all scales, since the
reorientation of the signatures is applied to all scales together.
The finer scales are dragged along by coarser scales. Future
work will also include the use of the steerable pyramid
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by Simoncelli et al. [50] as an alternative to the isotropic
multiscale framework used in this work. The proposed method
outperforms most filter– and wavelet–based approaches using
the Outex TC 00010 test suite [1, 26, 27, 29, 39, 42, 43, 51],
where only few methods based on LBPs achieve a performance
above 98% [14, 19, 21, 24, 25, 30, 33], sometimes with manual
parameter optimization. MR8, LM and S filterbanks were
reported to obtain performances of 72.57%, 51.8% and 68.61%
when combined with SVMs in [16] in 2012 using the same
database. The performance obtained for P 000 and P 001 in
Outex TC 00012 is similar to the performance obtained with
Outex TC 00010, which suggests higher illumination invari-
ance of the proposed approach when compared to methods
based on LBPs in [14, 19, 21, 30, 39]. Mother wavelet func-
tions have zero mean, which allows encoding signal transients
only and yields illumination–invariant image analysis as long
as the image contrast remains unaltered. We are currently
extending the proposed framework to 3–D [10], where the
importance of learning local organizations of directions is
essential because of the curse of dimensionality. The authors
will make the implementation available to the community.

APPENDIX A
DERIVATION OF THE STEERING MATRIX Aθ

Let us consider the matrix form of Eq. (3) in Eq. (12).
To derive the explicit form of the terms Aθn,l, let us consider
the Riesz transform of a rotated image fθ(x) at the origin 0.
In the Fourier domain, the rotated image is f̂θ(ω) = f̂(ω′),
where ω′1 = cos(θ)ω1 + sin(θ)ω2 and ω′2 = − sin(θ)ω1 +
cos(θ)ω2. The Riesz transform of a rotated image is developed
in Eq. (13). Using the change of variables k1 + k2 = l in
Eq. (13), the elements n, l of Aθ are developed in Eq. (14).
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