
Creating Resilient Self-Healing Agent
Environments

Stefano Bromuri and Michael Schumacher

University of Applied Sciences Western Switzerland,
Institute of Business Information Systems,

3960, Technopole 3, Sierre, Switzerland
{stefano.bromuri,michael.schumacher}@hevs.ch

Abstract. In the context of pervasive healthcare systems [15] there is
a growing need of services that are constantly available to the patients
accessing them. To address this issue, in this paper we present a dis-
tributed pervasive infrastructure that is capable of self-healing one or
more of its parts when an external event causes a disruption of the ser-
vice in the areas covered by the pervasive system. We utilise approaches
from multi-agent systems (MASs) such as communication, coordination,
planning and agent environments to create a distributed system whose
emergent behaviour shows the capability to heal itself even if 60% of the
system is not functioning due to external causes.

1 Introduction

In fields like pervasive computing and ambient intelligence there is a growing
need of models that allow the system to be independent from human inter-
vention. This is particularly true for the emerging discipline called pervasive
healthcare [15]. Such a field is focused on bringing healthcare everywhere and
for everyone, breaking the boundaries of hospital healthcare. Pervasive health-
care systems (PHSs) are intrinsically distributed and present the need of been
extremely fault tolerant as a downtime of the system may be potentially dan-
gerous for the life of the patients relying on them.

Due to this strict requirements, centralised approaches should be avoided as
the number of mobile services (i.e. ambulances) and patients utilising the in-
frastructure may be very high. Also, due to the spatially-distributed nature of
pervasive-healthcare applications, it is necessary to consider approaches that are
more sophisticate than simple space-based redundancy. As defined by Gärtner
in [7], space-based redundancy approaches assume the possibility of replicating
the functionalities of a node/component to improve the resilience of an infras-
tructure, but this becomes expensive when the number of nodes/components
participating in the system is already very high.

At the same time it is not acceptable to just leave the system fail, as a patient
may rely on the pervasive healthcare system to deal with his or her physiological
signals. Since in PHSs the fault tolerance model based on space-based redun-
dancy it is of little or no help, it is necessary to consider a different schema,



2 Creating Resilient Self-Healing Agent Environments

such as the one proposed by self-organising systems, that rather focus in what
Gärtner defines as time-based redundancy, that implies replicating behaviours
and functions in the components of the system to allow the system to adapt at
run-time to a disruption. Self-organising systems draw inspiration from natural
systems [1], biological systems [10] and social interactions [11], where entities
with self-similar behaviours interact to form complex interactions.

In this sense self-organising systems [19] can be a useful way to manage
the complexity of applications as the ones proposed by pervasive healthcare. In
particular, we are interested in self-healing systems [9], a particular branch of
self-organising systems that focus on resilience and fault tolerence.

The adoption of abstractions such as agents and multi-agent systems [18]
is facilitating the transition from a centralised model of computing to a de-
centralised and distributed model where possible thousands of entities, agents,
interact to achieve some common goal. Moreover, the concept of agent environ-
ment [17] has been accepted as a useful abstraction to mediate the interaction
between agents and to model the resources and interfaces that the agents utilise
in their interaction.

Since agents are by definition autonomous entities, MASs represent a valid
abstraction to model self-organising systems by having complex properties emerge
from the interaction taking place between hundreds of agents.

Arguably, a combination of the following drawbacks affects nowadays per-
vasive healthcare systems: (a) faults of the distributed system are never taken
into consideration; (b) the topology of the system is statically defined; (c) there
is not a clear approach to embed intelligence in the distributed system. In par-
ticular, in the system that we presented in [2] we proposed a distributed agent
environment capable to support abductive logic programmed agents to monitor
pregnant women affected by gestational diabetes mellitus. Amongst the assump-
tions proposed by such a system, there is the mapping between the agent envi-
ronment represented as a distributed cellular automaton and a real environment
representing a city. In this paper we propose to extend the system presented in
[2] with an approach based on planning, coordination, communication to tackle
situations when cells of the agent environment fail due to external causes, thus
making the agent environment capable to self-heal.

The contributions of the system proposed in this paper can be summarised as
follows. First of all we introduce a possible approach to the complexity of fault
tolerance in pervasive healthcare systems. Secondly, we show that the introduc-
tion of the agent environment as a medium of interaction allows to simplify the
behaviour of the agents involved in the self-healing process. Finally we show
that using simple planning agents allows us to deal with multiple faults of the
distributed environment in parallel.

The reminder of this paper is structured as follows: in Section 2 we discuss
the requirements of a pervasive healthcare system; Section 3 describes the self-
healing system we developed in terms of its main components to handle the
requirements previously described; Section 4 is an evaluation of our approach;



Creating Resilient Self-Healing Agent Environments 3

Section 5 discusses the main related work; finally Section 6 concludes this paper
and draws the lines for future work.

2 PHSs Requirements

In this paper we are motivated by the requirements of pervasive healthcare sys-
tems (PHSs). As specified by Varshney in [15], PHSs are complex systems where
multiple components interact to allow large scale monitoring of physiological
data originated by a set of possibly heterogeneous patients using a Body-Area-
Network (BAN). A typical topology of a PHS is shown on the top of Fig. 1. In
such a system every cell represents a different location of the real environment.
The patients have access to such cells by means of a mobile device that has
Internet connectivity capabilities.

Fig. 1. Division in Cells of Pervasive Healthcare System (on the left) and Cell Disrup-
tion (on the right).

Every cell of the environment is defined by its boundaries in terms of its
absolute GPS location and by its neighbourhood. When the system functions
correctly, the patients can migrate from one cell to another by moving in the
city, as it happens with a cellular network.

It is clear that PHSs systems have strong requirements from the standpoint
of availability and from the standpoint of fault tolerance. In other words, if
a fault happens to a cell of the system, like shown on the bottom of Fig. 1
(disruptions shown in gray), the system must be able to recover quickly, even if
with degraded functions, to minimise the probability that an emergency occurs
during the downtime. At the same time, the number of cells that cover a city
can vary according to the city and according to the number of patients in the
city. In general, the number of cells can be very high, as a consequence, to satisfy
the availability and fault tolerance constraints, it is necessary to limit the use of
centralised components as they offer a single point of failure. As Gärtner specifies
in [7], redundancy is necessary for fault tolerance, but for PHSs it is important



4 Creating Resilient Self-Healing Agent Environments

to avoid solutions that are redundant in space as they would be very expensive
for this kind of applications, but rather use solutions that are redundant in time,
by replicating the behaviour in distributed self-similar cells.

In this paper we focus on creating a distributed agent environment that
can support a PHS and at the same time satisfies the availability constraint
previously discussed. In particular, we will focus on defining those behaviours
of the distributed system that provide the necessary fault tolerance, while we
will not discuss other components of the PHS, such as the BAN, how the
hubs/smartphones are programmed and how the data is interpreted as these
issues are out of the scope of this paper.

3 Pervasive Healthcare Systems

In this paper we extend the PHS presented in [2] to deal with cell disruptions.
To extend such a system, we made use of the GOLEM agent platform [4] whose
main abstractions are agents, cognitive entities, objects, reactive entities avail-
able to the agents as resources, and containers, declaratively programmed spaces
where agents and objects are situated in possibly distributed settings, defining
a distributed agent environment.

It is important to clarify that with the term environment we mean the world
that is external to the agents and that the agents can inspect by using the
agent environment [17]. On one hand we define the agent environment as an
entity that mediates the interaction between the agents and resources deployed
in the system, working as medium of interaction. On the other hand the agent
environment hides to the agents the complexity of dealing with the state of the
environment, by providing standard interfaces and standard descriptions to the
resources in the external environment.

In the scope of this paper we use environment in terms of a place or a set
of places delimited by borders defined in terms of longitude and latitude in
the real environment. Longitude and latitude are mapped to a distributed agent
environment for monitoring purposes, where every node of the distributed agent
environment has an assigned area of the real environment. GOLEM is based on
the Ambient Event Calculus [4], a particular dialect of the Event Calculus [12]
that can handle the interaction between distributed containers. Such a formalism
allows containers to mediate the interaction in distributed settings, and it will
allow us to define procedures to deal with the disruption of cells in the distributed
system. The main predicates of this formalism are discussed in Fig. 2, following
the conventions of first-order logic that represent predicates with an upper case
letter and variables with a lower case letter.

Furthermore, GOLEM entities are specified in terms of their observable state,
called affordances [3]. The affordances in GOLEM are complex C-logic structures
[5] that evolve over time. C-logic is a formalism that has a direct translation to
first order logic and it is convenient to describe the structure of complex entities
such as agents, objects and containers. For example we can express the state of
a container at a given time by means of the following C-logic structure:



Creating Resilient Self-Healing Agent Environments 5

Predicate Description
Initiates/5 The Initiates/5 predicate defines how the events produced in the agent

environment change the attributes of a C-logic term to a new value.
Terminates/5 The Terminates/5 predicate defines how events produced in the agent

environment terminate the value of an attribute of a C-logic term.
HoldsAt/5 The HoldsAt/5 predicate allows to query the attribute of an object at a

given time, within one container.
InstanceOf/3 The InstanceOf/3 predicate allows to query the class of an object at a

given time.
LocallyAt/8 The LocallyAt/8 predicate allows to query the attribute of an object in

sub containers.
NeighbouringAt/9 The NeighbouringAt/9 predicate allows to query the attribute of an object

in neighbour containers.
RegionallyAt/9 The RegionallyAt/9 predicate allows to query predicates in distributed

regions of super/sub and neighbour containers.

Fig. 2. AEC Predicates

Container:C1[Latitude ⇒ lat,Longitude ⇒ lon,Side ⇒ 50, State ⇒ Up,
Neighbours ⇒ {Container:C2,Container:C3}]

which means that a container represent a location, or cell, of the real environ-
ment, it is associated with a latitude Lat and and a longitude Lon, its state is
up, and it covers a square that has a side of 50 meters.

The main issue of the system described in [2], is that there is no procedure in
place to deal with the failure of a container and the area assigned to the container
is not covered until an operator amends the issue. To provide a solution to this
problem we introduced a infrastructure agent for every container.

The infrastructure agents observe and perceive changes in the topology of
the agent environment and they coordinate with neighbour agents to cover for
the fault of one or more containers. The plans are instantiated and executed
in parallel to minimise the downtime, while the agent communication allows to
minimise the excessive expansion of the containers ensuring that the workload
is equally distributed. Moreover, we modified the behaviour of the distributed
containers to re-route the messages exchanged between the agents according
to the neighbourhood known in previous interaction, splitting in this way the
responsibility to recover from the fault from the responsibility of dealing with
the topology. The overall result is a system that is capable to handle the failure
of a cluster of containers in the distributed agent environment and continue
functioning even if with degraded functions until the normal behaviour of the
system is restored.

3.1 The Containers Behaviour

In this paper, we extended the behaviour and architecture of the GOLEM con-
tainers to handle self-healing procedures. Fig. 3 shows the architecture of PHS
GOLEM containers used in this paper. In particular we modified the existing
GOLEM containers by loading them with rules to handle self-healing procedures,
communication during self-healing and by adding an infrastructure agent as a
permanent service deployed in every container.



6 Creating Resilient Self-Healing Agent Environments

We assume that a newly deployed container in the distributed agent environ-
ment is created with direct knowledge of its direct neighbours. We also assume
that the containers cover exactly one location of the real environment.

Fig. 3. The Architecture of a PHS GOLEM Container.

For the moment, we do not focus on how a container can join an existing
network, we assume that this task is performed by a human actor. We also
assume that once a container is put down due to external causes, this can be
redeployed only by a human actor. These two problems are out of the scope of
this paper, but they will be addressed in future publications.

Given the aforementioned assumptions, we extended the behaviour of the
GOLEM containers and of the AEC, introducing the PropagateAt/3 predicate
to handle the propagation of messages produced by agents in the distributed
settings. The PropagateAt/3 predicate is specified as follows:

R1) PropagateAt(Ack:event,ContainersList,t)←
Happens(event,t), event[Actor ⇒ agent, Receivers ⇒ ContainersList ],
(∀ x ∈ ContainersList | HoldsAt(x,Neighbour,this,t)).

R2) PropagateAt(Inform:event, Containers, time)←
event[Actor ⇒ agent[Container ⇒ sendercontainer], Cover ⇒ cbroken, RandomValue ⇒ diceroll ]
(∀ x ∈ Containers, Containers ⊆ KnownContainers |
HoldsAt(x,Neighbour, cbroken,time),HoldsAt(x,State, Up,time)).

R3) Initiates(cid,Container,Neighbour, sendercontainer, ev) ←
cover:ev[Actor ⇒ agent[Container ⇒ sendercontainer], Container ⇒ cbroken]
Time(ev,T), HoldsAt(cbroken,Neighbour,this,T).

R4) Initiates(cid, Container,State, Down, ev) ← notify failure:ev[Actor ⇒ agent, Down ⇒ cid].

The interpretation of the PropagateAt/3 is as follows. The R1 rule is triggered
whenever there is an acknowledgment message submitted by a infrastructure



Creating Resilient Self-Healing Agent Environments 7

agent to the neighbour containers. The idea here is that at deployment time
the containers have information only about the direct neighbourhood, while the
information about the other containers in the network is learned by message
exchange. The message exchange takes the form of an acknowledgement mes-
sage that is issued by the agents at regular intervals to check for the health of
the distributed system. On one hand, for practical reasons and to avoid global
knowledge of the network, we have chosen to have agents that know only which
are their neighbours and tha can learn by message exhange which are the neigh-
bours of their neighbours. On the other hand, the containers can modify their
knowledge of the topology and modify their boundaries to cover for a disruption.
When this happens, the neighbourhood of the container changes their knowledge
about the neighbourhood to adapt to the new topology using R3 and R4. The
R2 rule propagates the information that an agent wants to cover for a container
that has been detected to be down by broadcating the information to all the
neighbours of the dead container that are known to be alive. The introduction
of R2 simplifies the behaviour of the agent that does not need to keep a rout-
ing table to know which is the current neighbour of a certain container. Rules
R3 and R4 specify respectively that the current container is neighbour of an-
other container if its infrastructure agent is covering for a dead neighbour of the
current container. In particular, the event described in R4 takes place when an
agent does not receive an inform event from a neighbour container at the right
interval of time or if the communication with a container fails resulting in an
notification of failure event. The routing table of the dead or alive containers in
the neighbourhood of the container is handled by means of C-logic terms and
it can be queried by the agents by means of the predicates of the AEC in the
declarative context of the GOLEM container. To conclude, rules R3 and R4 have
two correspondent Terminates/5 rules to specify when a container ceases to be a
Neighbour or when it ceases to be dead.

3.2 The Infrastructure Agents

In GOLEM, agents are situated entities that have a body with a set of sensors
and effectors that can perceive and act in the agent environment and a declar-
ative mind connected to the body by a brain interface. What is important to
state is that the declarative agent mind is a separated module with respect to
the agent environment, which means that, despite the fact that the body is con-
strained by the rules of the agent environment, the agent preserves its autonomy
in the reasoning process, and that the body and the mind work as coroutines
that share queues for percepts from the environment and actions to the environ-
ment. We extended GOLEM and we introduced an infrastructure agent that is
situated in every container of the distributed agent environment and that is ca-
pable to interact with other infrastructure agents to heal the agent environment
when a disruption takes place.

The agent cognitive model is based on two cycles, one to observe the envi-
ronment and the other one to plan and act in the environment. The agent mind
for the self-healing process is also based on the Event Calculus, but the theory



8 Creating Resilient Self-Healing Agent Environments

that represent the reasoning process is quite complex, as a consequence we re-
port here the pseudo code of the two cycles that represent the agent mind (CSP
stands for Conditional-STRIPS-Planner):

procedure ACTING-Cycle(time)
static:KB, a knowledge base

ACTION-QUEUE, a queue of actions
accessible by the agent body,
p1, p2 . . . pk, where∀pi, pi ∈ Plans ⊂ KB, a set of plans

currentstate ← STATE-DESCRIPTION(KB,time),
goal ← NEXT-GOAL(currentstate,time),
ADD(Plans,p1),
if @pi|pi.goal = goal then

pk ← CSP(currentstate,goal), ADD(Plans, pk)

pexec ← NEXT-EXECUTABLE-PLAN(Plans,time),

if(pexec = nil)then
NOW(timenew),
ACTING-Cycle(timenew)

else
currentaction = pexec.nextaction,
if(CONDITIONAL?(currentaction)) then

if(CHECK-KB(KB,IF-PART[currentaction]))
then pexec ← THEN-PART[currentaction],

NOW(timenew),
ACTING-Cycle(timenew)

else pexec ← ELSE-PART[currentaction]
NOW(timenew),
ACTING-Cycle(timenew)

else
ADD-ACTION(ACTION-QUEUE, currentaction),
NOW(timenew),
ACTING-Cycle(timenew)

procedure PERCEPTION-Cycle(time)
static:KB,

PERCEPTION-QUEUE,
p1, p2 . . . pk, where∀pi, pi ∈ Plans ⊂ KB

percept← NEXT-PERCEPT(PERCEPTION-QUEUE, time),
UPDATE-KB(KB, percept, time),
NOW(timenew),
PERCEPTION-Cycle(timenew)

On one hand the ACTING-Cycle is in charge to instantiate plans and exe-
cute the actions within the plan by pushing the action in the ACTION-QUEUE
and consequently in the agent body and effectors. Notice that if the plans are
of different nature, or they have a different goal, they can be instantiated and
executed in parallel. Due to the nature of the problem of self-healing, this does
not represent a problem, because there are not conflicting plans, as they are
associated to different cells of the environment. The agent mind is capable to
deal with plans that are conditional, as a consequence when a conditional ac-
tion arises, the agent will check the condition within the knowledge base and
execute the subplan whose condition results to be true at a certain time. The
PERCEPTION-Cycle reads the PERCEPTION-QUEUE for percepts coming from
the agent body sensors. Such percepts are used to update the knowledge base
KB about the state of the containers that are known in the agent environment.

At the same time the updating process can destroy plans in the case these are
not reachable any more. During the normal functioning of the network, the agents



Creating Resilient Self-Healing Agent Environments 9

observe the environment at regular intervals, updating their knowledge about
their neighbours. One one hand, the agents do not have global knowledge of the
environment as this would cause severe inconsistencies every time the network
changes. On the other hand, the agents have knowledge about the neighbourhood
of its direct neighbourhood as this helps in situations when the disruption in the
distributed agent environment hits cluster of neighbour cells.

The agent planning capabilities are based on a modification of STRIPS [6]
to handle conditional plans. In particular, the plan to handle the disruption of
neighbour cells is composed by means of the following atomic principles:

Op(ACTION:Broadcast(Inform(Cover(aid,containerid,diceroll))),
PRECONDITIONS:[Down(containerid), IAM(aid), Diceroll(diceroll)],
EFFECTS:[Add(PreviousAction(Inform(Cover(aid,containerid,diceroll)))),

Add(Diceroll(diceroll))]).

Op(ACTION:Timeout(Time),
PRECONDITIONS:[PreviousAction(Cover(aid,continerid,direroll))],
EFFECTS:[Add(KnowsWhether(winner(aid,containerid,value)))),

Del(PreviousAction(Cover(aid,continerid,diceroll)))]).

Op(ACTION:end plan,
PRECONDITIONS:[Down(containerid), IAM(aid),

KnowsWheter(winner(aid,containerid,False)))],
EFFECTS:[add(End)]).

Op(ACTION:ModifyTopology(aid,containerid),
PRECONDITIONS:[KnowsWhether(winner(aid,containerid,True)))],
EFFECTS:[Add(Covers(aid, containerid))]).

The actions specified above represent the atomic actions of the plan in Fig.
4.

Fig. 4. Plan to Cover a Dead Cell of the Environment

Such a plan is triggered in the agent mind when a neighbour container is
perceived to be down at a certain time due to a missing acknowledgement re-
peated three times or due to a failed communication with a neighbour container.
Whenever one of these situations arise, the infrastructure agent submits an in-
form message to the agent environment.



10 Creating Resilient Self-Healing Agent Environments

The inform message contains the informations about the sender, the dead cell
and a diceroll value. Such a value is a random value used to compete with the
neighbour agents for covering for the dead neighbour.

Fig. 5. Simulation of Interaction of a 6x6 Pervasive Agent Environment with service
disruptions

Such an inform message is propagated by the environment by means of the
PropagateAt/3 predicate to the neighbours of the dead cell that are known by
the infrastructure agent to be alive. After the submission of the inform message,
the agent waits for inform signals coming from the other agents until a timeout
is internally triggered in the agent mind. After the timeout, the agent checks the
received signals and if it is the winner of the competition, it proceeds to cover
for the dead cells, otherwise it ends the plan as it is not reachable any more, due
to the fact that there is another container with a higher diceroll that is going to
cover for the disruption.

It is worth noting that this simple behaviour could be handled using purely
reactive agents. We argue here that, despite the fact that reactive agents could
handle the disruptions of containers, at the same time defining termination pro-
cedures for unreachable actions would require updating the state of the agent
in every reactive rules defined to handle such an action. Instead, we prefer to
have agents capable to reason about their actions, reifying the concept of plan
as structures on which the agent can reason about, as this allows for a more
concise and clean definition of the agent mind. Another solution different than
planning could be to span a different agent whenever a neighbour container dies
and then destroy the agent as soon as the solution is covered. Although current
hardware architectures support more and more multi-threading, such a practice
in a PHS would be a lot more resource demanding than the current approach
proposed in this paper as an agent is understood to be an active entity with its
own control flow and its own allocated resources. To illustrate how the plan in
Fig. 4 works from the perspective of the agents interacting in the neighbourhood,
let us take into consideration the example shown in Fig. 5. The panel on the left
in Fig. 5 shows a set of GOLEM containers represented by a different color in
the cellular automaton. The central panel in Fig. 5 shows that four of containers



Creating Resilient Self-Healing Agent Environments 11

have undergone a service disruption. The panel on the right in Fig. 5 shows that
the area of the containers that have undergone a service disruption have been
covered by their neighbours.

The introduction of parallel plans help the agents to minimise the downtime
for the coverage of a dead cell as whenever a neighbour is recognised to be dead,
a new plan is instantiated within the agent mind.

At the same time the introduction of agent communication, aided and me-
diated by the agent environment, allows to minimise a) the number of messages
exchanged in the environment b) the uncontrolled growth of the area controlled
by a cell and c) the conflicts arising between cells covering for a dead neighbour
at the same time.

In particular, it is important to say that, despite the communication taking
place between the agents, two cells may end up covering the same broken cell.
In this case, when the inconsistency is perceived, the interested agents start a
resolution protocol similar to the one in Fig. 4 to decide who should give up the
covered area, but we omit this from the description as the protocol itself is very
simple.

4 Evaluation

In a pervasive healthcare system like the one presented in this paper there are
two measures that are critical. One is the downtime of the system due to a
failure. The higher is the downtime the higher is the probability of an emergency
happening while the system cannot cover it. Secondly the number of messages
exchanged in the system to recover from a downtime. This is a sensible measure
as if the number of messages exchanged is very high, this could have impact
on the performances of the healthy part of the system, even causing further
disruption.

We evaluated the overall behaviour of our system by deploying a 10x10 Grid
of GOLEM containers with self-healing capabilities, taking an average of a set
of 10 repeated tests for every curve showed in Fig. 6. For the evaluation we used
a dual core Intel Centrino 2, 2.66 Ghz per core with total of 3Gb of RAM.

Despite the fact that we deployed the real system within a single machine,
this evaluation only emulate what could be the behaviour of the system in real
settings. In real settings, the system should be distributed on a GRID of dis-
tributed machines that all have their own resources. In particular, we imagine
that in a real PHS application, some of the containers would require more re-
sources as they represent hot spots in the real environment (i.e. super markets,
schools or hospitals) while some other areas require less resources and as a con-
squence multiple containers could be deployed on the same machine or even one
container could just be assigned to a bigger unpopulated area. For the moment
this is still matter of future work, but we recognise the need to study the system
with the presence of patients in it.

As evaluated by Urovi et al. in [14], a GOLEM container can support up to
50 avatar agents with acceptable performances, which means that a GRID of



12 Creating Resilient Self-Healing Agent Environments

100 containers can support up to 4000-5000 users, that is a meaningfull scale for
a real system in a city where there are about 200.000 people such as the city of
Lausanne where the number of patients that need constant monitoring regimes
are on the order of some hundreds.

Fig. 6. Performance Evaluation of a 10x10 Pervasive Agent Environment

When producing the curves in Fig. 6 we made the following set of assump-
tions. First of all, since the system is deployed in a single machine, the delays
of a real network are not taken into consideration. We assumed for both of the
graphs that the cells die all at the same time, although this is not realistic, it is a
pessimistic assumption. A third assumption is that the system presents failures
after every cells had the time to learn about its neighbours and their immediate
neighbourhood. The last assumption is that the failures are random and do not
depend on a particular pattern, although we can handle small cluster of dead
cells, for practical reasons our algorithm cannot handle the failures of very big
clusters of cells, meaning that we assume the failure to be distributed in the
network and that the agents have not a global knowledge. The last assumption
is not a big limitation as it is related to catastrophic events happening in the net-
work that in many cases are impossible to handle without an operator reparing
the physical hardware in an area of the pervasive system.

The part on the top of Fig. 6 shows the number of dead cells with respect
to the number of messages that the containers and the agents within them need
to exchange to cover for the missing containers. The behaviour of the curve is
logarithmic. This happens because the more nodes in a neighbourhood die, the
less nodes take part to the competition for covering a dead node, as a consequence
there are less messages to exchange in the neighbourhood. The direct drawback
is that the agents still alive have to instantiate and execute more plans to cover
for the dead cells. The effect of this can be seen on the part on the bottom of
Fig. 6. The time to recover from a set of faults in the network behaves as a
mildly quadratic curve as far as the percentage of dead nodes in the network is
less than 40%, but when percentage of dead nodes goes over 50%, the downtime
has a peak. This happens because the agents have to cover for multiple cells in



Creating Resilient Self-Healing Agent Environments 13

their neighbourhood, resulting in the instantiation of multiple plans which is a
time expensive operation.

To conclude the evaluation, the two graphs show that the healing agent envi-
ronment can scale up as the message exchange is kept local to a neighbourhood
thanks to a combination of interaction between the agents and the rules of their
environment, and that the limit for recovering from a failure is that at least 50%
of the cells of the distributed agent environment are still alive.

5 Related Work

The pervasive health care field is relatively new, but it has its roots in the
distributed computing area, where multiple solution have been proposed in the
past to deal with distributed resiliency.

Mikic-Rakic et al. in [13] defined a set of properties that is necessary to ad-
dress to have true self-healing systems. In particular these properties are identi-
fied as: adaptability, dynamicity, awareness, observability, autonomy, robustness,
distributability, mobility and traceability. The authors then propose the PRISM
model as the answer to the above properties. Such a model is based on having
a set of components connected by means of communication ports that exchange
synchronous and asynchronous events and rely on metal-level components for
the self-healing procedures. With respect to PRISM, the infrastructure agents
can be thought as meta-level components with knowledge about the topology
of the distributed system, while the communication between the components is
done by means of message exchange amongst the infrastructure agents. In par-
ticular, to foster the observability property of the topology of our distributed
system we use a declarative approach based on planning and on extending the
rules of the Ambient Event Calculus [4].

From the stand point of self-healing systems, in [8] Selvin et al. in propose to
utilise a bio-inspired approach to rebuild geometric shapes and then they apply
this approach for a distributed wireless file service. Selvin et al. demonstrate that
using nature inspired models like cell division and morphogenesis and wound
healing allows to have a very resiliant service that is capable to self-heal despite
the fact that 99% of the network is dead.

Our approach is similar to the one proposed by Selvin et al. except that we
have a further constraint on the number of messages exchanged and on the time
to recover from the failures. In this sense, with respect to the work in [8], the fact
that we have planning agents that interact producing simple plans in parallel
helps to minimise the downtime, while the communication process, aided by the
rules of the environment, helps to minimise an uncontrolled expansion of the
cells in their neighbourhood.

The work of Kondacs in [10] is another example on how using bio-inspired
models allows to create robust systems. In particular Kondacs proposes a self-
healing systems where the general principles are formalized as a programming
language with explicit primitives, basing the self-organisation on processes such
as morphogenesis and developmental biology. Kondacs demonstrates that, de-



14 Creating Resilient Self-Healing Agent Environments

spite having cells in the system dieing at a high rate, the system is capable to
self-regenerate the missing part. Similarly to Kondacs, we utilize a declarative
approach to define the rules for with the healing process takes place, but dif-
ferently from what proposed by Kondacs, we have a further constraint related
to the mapping of the system to a real environment which does not allow us to
have an uncontrolled growth of the cells to cover for the dead cells.

In [16] Haesevoets et al. present the MACODO system for self-healing and
self-adaptive agent organisations. In particular the MACODO system is based
on splitting the responsibilities of the agents in terms of roles and define a set of
laws in the agent environment to handle the consistency of the roles. Similarly to
the work in [16], we separate the concerns of handling self-adaptation between
the agent environment and the agents, but differently from [16], we use cognitive
agents to deal with the changes of the environment, which allows us to deal with
its failure and inconsistencies in parallel.

6 Conclusion and Future Works

In this paper we presented a pervasive healthcare system where agents reorganise
the agent environment to self-heal from a fault of one more of the cells composing
it. The approach makes use of planning agents that can reason in parallel about
multiple faults and that produce plans and interact to cover for the missing
cells in the environment, and it makes use of distributed agent environments
programmed to propagate the messages produced by the agents according to the
alive neighbourhood. The novelty of the approach resides in the use of planning
agents combined with a complex declarative agent environment that simplifies
the interaction between the agents controlling the distributed system. We have
evaluated the behaviour of the system from the point of view of the downtime
and number of message exchanges required to recover from a growing number
of dead cells, discovering that the system as actually conceived scales up but it
can recover in usefull time even more than 50% of the cells is down. We also
compared our work with the existing literature.

Future works include deploying the system in real setting and testing it with
real users as well as extending the algorithm to define the topology of the envi-
ronment dynamically at deployment time. Another issue that we will take into
consideration in future work is how to deal with patients roaming in a distributed
network that is self-healing from a disruption. Other possible directions imply
improving the current results further, avoiding broadcasting in the neighbour-
hood for every single dead cells, as well as considering more complex distributed
agent environments that include indoor environments, using a hierarchical topol-
ogy rather than a cellular automaton.

References

1. P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo. Estimation-based
ant colony optimization and local search for the probabilistic traveling salesman
problem. Swarm Intelligence, 3(3):223–242, 2009.



Creating Resilient Self-Healing Agent Environments 15

2. S. Bromuri, M. I. Schumacher, and K. Stathis. Towards distributed agent environ-
ments for pervasive healthcare. In Proceedings of the Eighth German Conference
on Multi Agents System Technologies (MATES ’10), 2010.

3. S. Bromuri and K. Stathis. Situating Cognitive Agents in GOLEM. In Engineering
Environment-Mediated Multiagent Systems (EEMMAS’07). Springer, Oct 2007.

4. S. Bromuri and K. Stathis. Distributed Agent Environments in the Ambient Event
Calculus. In DEBS ’09: Proceedings of the third international conference on Dis-
tributed event-based systems, New York, NY, USA, 2009. ACM.

5. W. Chen and D. S. Warren. C-logic of Complex Objects. In PODS ’89: Proceed-
ings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 369–378, New York, NY, USA, 1989. ACM Press.

6. R. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. In IJCAI, pages 608–620, 1971.

7. F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Comput. Surv., 31:1–26, March 1999.

8. S. George, D. Evans, and L. Davidson. A biologically inspired programming model
for self-healing systems. In WOSS ’02: Proceedings of the first workshop on Self-
healing systems, pages 102–104, New York, NY, USA, 2002. ACM.

9. D. Ghosh, R. Sharman, H. R. Rao, and S. Upadhyaya. Self-healing systems –
survey and synthesis. Decision Support Systems, 42(4):2164–2185, 2007. Decision
Support Systems in Emerging Economies.

10. A. Kondacs. Biologically-inspired self-assembly of two-dimensional shapes using
global-to-local compilation. In IJCAI’03: Proceedings of the 18th international
joint conference on Artificial intelligence, pages 633–638, San Francisco, CA, USA,
2003. Morgan Kaufmann Publishers Inc.

11. R. Kota, N. Gibbins, and N. R. Jennings. Self-organising agent organisations. In
C. Sierra, C. Castelfranchi, K. S. Decker, and J. S. Sichman, editors, AAMAS (2),
pages 797–804. IFAAMAS, 2009.

12. R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen. Comput.,
4(1):67–95, 1986.

13. M. Mikic-Rakic, N. Mehta, and N. Medvidovic. Architectural style requirements for
self-healing systems. In Proceedings of the first workshop on Self-healing systems,
WOSS ’02, pages 49–54, New York, NY, USA, 2002. ACM.

14. V. Urovi, S. Bromuri, K. Stathis, and A. Artikis. Towards runtime support for
norm-governed multi-agent systems. In F. Lin, U. Sattler, and M. Truszczynski,
editors, KR. AAAI Press, 2010.

15. U. Varshney. Pervasive Healthcare Computing: EMR/EHR, Wireless and Health
Monitoring. Springer Publishing Company, Incorporated, 2009.

16. D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, and W. Joosen. The macodo
middleware for context-driven dynamic agent organzations. ACM Transactions on
Autonomous and Adaptive Systems, 5(1):3.1–3.29, February 2010.

17. D. Weyns, A. Omicini, and J. Odell. Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30,
2007.

18. M. Wooldridge. MultiAgent Systems. John Wiley and Sons, 2002.
19. F. Zambonelli and M. Viroli. Architecture and metaphors for eternally adaptive

service ecosystems. In C. Badica, G. Mangioni, V. Carchiolo, and D. D. Burdescu,
editors, IDC, volume 162 of Studies in Computational Intelligence, pages 23–32.
Springer, 2008.


