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Abstract—Trans–radially amputated persons who own a my-
olectric prosthesis have currently some control via surface elec-
tromyography (sEMG). However, the control systems are still
limited (as they include very few movements) and not always
natural (as the subject has to learn to associate movements of
the muscles with the movements of the prosthesis). The Ninapro
project tries helping the scientific community to overcome these
limits through the creation of electromyography data sources to
test machine learning algorithms. In this paper the results gained
from first tests made on an amputated subject with the Ninapro
acquisition protocol are detailed. In agreement with neurological
studies on cortical plasticity and on the anatomy of the forearm,
the amputee produced stable signals for each movement in the
test. Using a k–NN classification algorithm, we obtain an average
classification rate of 61.5% on all 53 movements. Successively,
we simplify the task reducing the number of movements to 13,
resulting in no misclassified movements. This shows that for fewer
movements a very high classification accuracy is possible without
the subject having to learn the movements specifically.

I. INTRODUCTION

Daily life of hand amputees can be hard in comparison
to their situation before the amputation. Prostheses controlled
by surface electromyography (sEMG) have been used since
the late sixties [1] and contribute to remarkably improve their
quality of life. However, prostheses are still far from giving to
the subjects the same abilities as intact persons due to several
reasons. First, the prosthesis usually offer only 2 or 3 degrees
of freedom, and therefore the number of movements that can
be performed is limited (usually opening and closing of the
prosthesis). Second, the control systems are not ”natural”,
meaning that the movement that is performed by the prosthesis
does not reflect the movement that the amputee would be doing
with the intact hand if it was still present. In some cases, the
number of movements can be increased using specific control
sequences. However, in most of these cases the movements
are far from being natural and easy to be reproduced. Third,
the training procedures are complicated and often require long
and difficult learning processes that can easily discourage the
amputee.
These facts contribute to the scarce use of sEMG prostheses by
amputated subjects [2]. This is in contrast to recent advances in
mechatronics that enhance the possibility to build and control
mechanical hands with many degrees of freedom. The research
community has been working hard to improve the control
in hand prosthetics. The most common approach consists of

control schemes based on classifiers that are used to understand
which movement is desired. The approaches presented so far
in the literature use various techniques for preprocessing the
data [3], [4] and classifying the movements [4], [5], [6].
A review of the methods and of the results obtained till now
is described in [7]. All of the considered papers analyze up to
12 movements, and most of them (except [8]) do not make
parallel acquisitions of intact and amputated subjects. Results
of particular interest for amputated subjects are described
in [8], in [9], and in [10], where the authors obtain respectively
95.74% accuracy in the classification of 6 movements, 84.4%
on 10 movements and 87.8% on 12 movements. Despite the
differences between the procedures, most of the studies of the
field share a common validation procedure that is based on
private databases of sEMG recordings.
The NinaPro (Non–Invasive Adaptive Hand Prosthetics)
project [11] started in January 2011, and has the aim to help
the scientific progress in the field with a benchmark database
to test and develop machine leaning algorithms for hand
movement sEMG data. Currently, a database with 27 subjects
for 53 movements is available for download on request.
In this paper we describe the results obtained from the
classification of the first preliminary dataset acquired from
an amputated subject during the setup and the first tests of
the Ninapro database. We show that the considered amputee
can produce distinct, stable signals for several movements,
in agreement with neurological studies on cortical plasticity
and on the anatomy of the forearm. Moreover, we compare
the classification results with the average results of 27 intact
subjects. Finally, we simplify the task reducing the number
of movements to 13, resulting in no misclassified movements.
Obviously in this way we reduce the complexity of the task,
but we want to reach a different objective, i.e. showing that
for fewer movements a very high classification accuracy is
possible, without the subject having to learn the movements
specifically. The application of the results described in this
paper to the industry of hand prosthetics could lead to impor-
tant changes in the life of hand amputees since (with almost
standard sEMG setup) the subject could naturally control a
dexterous prosthesis and could be able to do most of the
movements needed for daily activities.



II. METHODS

A. Data Acquisition

The dataset of the amputated subject was acquired from
a subject with a transradial amputation of the right forearm.
The subject is a right handed 31 year old male and was
amputated 13 years before the data acquisition after an ac-
cident. The amputation is transradial shortly below the elbow,
with approximately 10 cm (40%) of the forearm remaining.
Since the amputation, the subject has always used myoelectric
prosthesis. The dataset of the amputated subject is compared
with 27 datasets from healthy controls (20 males, 7 females; 25
right-handed, 2 left-handed; average age 28 years with standard
deviation 3.4 years).
The sEMG data were acquired according to the Ninapro acqui-
sition protocol [11]. The muscular activity is gathered using
eight active double–differential OttoBock MyoBock 13E200
sEMG electrodes1. The electrode amplification is set to 5
(which corresponds to an amplification of 14’000) according
to the results of several preliminary tests. The signal is filtered
and rectified by the hardware included in the electrode. The
electrodes are placed around the stump of the forearm using
an elastic band as shown in Figure 1.

(a)

(b)

Fig. 1. Forearm of the trans–radial amputated subject with (a) and without
(b) the acquisition setup on.

A specific electrode is placed on the radio–humeral joint
and the remaining electrodes are placed at approximately equal
distances from it. No electrodes were placed on the main
activity spots of the finger muscles as described in [11] due
to the fact that there was not enough space on the stump.
However, as described in the literature, pattern recognition
can compensate for suboptimal placement [12], [13] and
may even take advantage of muscle cross-talk, especially in
amputated subjects [9]. Moreover, the described setup gives the
opportunity to improve classification results applying spatial

1Otto Bock HealthCare GmbH, http://www.ottobock.com

registration algorithms, as described by [14]. The signal of the
electrodes was acquired at a constant interval of 100 Hz using
a National Instruments DAQ card (NI–DAQ PCMCIA 6024E,
12–bit resolution).
The protocol includes 10 repetitions of 53 movements rep-
resented in Figure 2. These movements were selected from
the hand taxonomy and robotics literature, (e.g., [15], [16],
[17], [18], [19]), as well as from the Disabilities of the Arm,
Shoulder and Hand protocol for functional movements [19].
During the acquisition, the subject repeated bilaterally the
movements shown on the screen of a laptop according to a
bilateral imitation procedure [9]. Each movement repetition
lasted 5 seconds and was followed by 3 seconds of rest.

B. Analysis

All data were synchronized by linearly interpolating them
to the highest recording frequency (i.e., 100 hertz). Then, the
signal of the electrodes was low–pass filtered at 1Hz using a
zero–phase second order Butterworth filter. The signal from
each repetition of each movement was then segmented with a
relabeling algorithm that constrains movement labels to those
samples in which there is increased sEMG activity [20]. Then,
the data of all the movement repetitions are normalized to the
same time length, and the signal is divided by the standard
deviation and normalized to its maximum.
A k–NN classification algorithm [21] based on the normalized
Euclidean distance [22] is applied to the repetitions of the
movements with a leave one out approach.
Finally, the same classification procedure is applied to subsets
of movements in order to find selections without any misclassi-
fication. Obviously in this way we reduce the complexity of the
task. However with this analysis we want to reach a different
objective that consists in showing that for fewer movements a
very high classification accuracy is possible without training
the subject to perform specific movements.

III. RESULTS

The number of repetitions assigned to each movement
by the classification procedure and the average classification
results are represented in Figure 3. It can be noticed that the
average classification accuracy is 61.51%, so well above the
chance level (1/(number of classes ⇡ 2%). Moreover, we see
that in several cases (e.g. in movements 2, 10, 21, 39, 40)
the percentage of repetitions classified as wrong movements
is dominated by a few commonly misclassified movements,
meaning that the correct movement is mistaken for a specific
other one in most cases.
The average classification results for the amputated subject
and for the 27 intact subjects are summarized in Table I and
in Figure 4. It can be seen that the average accuracy for
intact subjects is 80.16%, i.e. approximately 20% more than
the accuracy obtained for the amputated subject. Moreover
the intact subjects’ average accuracy is included in the am-
putated subject accuracy plus the standard deviation, while the
accuracy obtained for the amputated subject is included in the
average accuracy for intact subjects minus 3 sigma.
Finally, we simplify the task removing several ambiguous

movements and reducing therefore the number of movements
to 13 of the 53 original ones. This subset of movements does
not contain any misclassification and shows that for fewer



(a) Basic movements of the fingers.

(b) Isometric, isotonic hand configurations.

(c) Basic movements of the wrist.

(e) Grasps and functional movements.

(f) Rest posi-
tion.

Fig. 2. The 53 movements acquired within the Ninapro acquisition protocol. In the boxes the simplified task of 13 movements without any misclassification.

Fig. 3. Classification and misclassification results for each movement for the amputated subject. Yellow bar: average classification rate; bars of other colors:
repetitions of the movement indicated on the x-axis classified as the movement indicated in the number in the middle of the bar.



TABLE I. AVERAGE CLASSIFICATION RESULTS FOR BOTH INTACT AND
AMPUTATED SUBJECS.

Subject Mean Standard Deviation
Amputated 61.51 22.50

Intact subjects 80.16 6.49

Fig. 4. Distribution (green bars) and Gaussian fit (black curve) of the
classification results of all the movements in intact subjects and comparison
with the amputated subject (black X).

movements a very high classification accuracy is possible
without training the subject to learn the movements specifi-
cally. Smaller subsets of different movements could also be
selected depending on other parameters such as the functional
usefulness of the movements.

IV. CONCLUSION

In this paper we describe the classification results of the
sEMG signals emitted by the remnants of the hand muscles of
a hand amputated subject. The acquisition setup and procedure
are defined in the Ninapro project [11]. The data was acquired
as a first test for the Ninapro protocol on an amputated subject.
Before considering the results, we shall note two important
aspects: first, to our knowledge no sEMG database with so
many movements has been described in literature for an
amputated subject: the Ninapro acquisition protocol contains
53 different movements, vs. a maximum of 12 movements in
other databases [7] (i.e. 4 times less); second, in very few
articles till now sEMG signals from intact and amputated
subjects have been acquired and analyzed in parallel [7], and
in no paper it is described a statistical comparison of the two
kinds of subjects.
The results highlight several interesting aspects. First, the
average classification rate over all the 53 movements included
in the protocol is 61.51%, so much above the chance level
of 1.8%. This fact shows that the amputee still produces
distinct signals for several movements, in agreement with
neurological studies on cortical plasticity and on the anatomy
of the forearm.
Second, the avarege of the results from the 27 intact subjects
is 80.16%, therefore the classification performance of the

amputated subject is just 25% less than the performance of
intact subjects, despite the absence of the limb and of most of
the forearm.
Third, it is shown that it is possible to simplify the task
reducing the number of movements to 13 in order to avoid
any misclassification. Obviously in this way we reduce the
complexity of the task, however this result shows that for fewer
movements a very high classification accuracy is possible
without training the subject to perform specific movements.
These results were only performed on a single person, which
is a limitation, but most other studies also only have very
small numbers of subjects. Both the number of movements
and the level of accuracy are higher than the ones described
in literature for similar tasks (e.g. 6 movements, accuracy
95% [9]; 10 movements, accuracy 84.4% [10]; 12 movements,
accuracy 87.8% [8]). It should be noticed that the results in the
literature are obtained from “long below elbow” trans–radial
amputations, in which most (55%–90%) of the forearm is still
present; instead, the classification results decrease strongly if
less of the forearm remains, as in the case analyzed in this
paper.
It is important to notice that the used dataset is preliminary as
it was created to test the Ninapro protocol on an amputated
subject. In the next months, final datasets from a larger number
of amputated subjects will be acquired within the Ninapro
project. Therefore, a better evaluation can then be performed
with more subjects allowing to gain statistical validity.
It is also important to notice that the hand movements were
performed with the forearm placed on a table in laboratory
conditions, and therefore little shoulder and elbow reaching
movements were involved. Greater reaching movements could
involve additional EMG components that could reduce the
success rate of hand movement classification. This fact should
be deeply analyzed if the results are confirmed on larger data
sets.
However, the confirmation of the described results with larger
data sets, could be an important step toward the natural control
of dexterous prostheses. The natural control of 13 movements
for daily activities with a standard sEMG setup can improve
the quality of life of hand amputated subjects in an important
way.
Finally, the results highlight the usefulness of the Ninapro ac-
quisition protocol, as the high number of movements acquired
by the protocol permits to choose subsets of movements that
can be used with high accuracy.
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