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ABSTRACT
Content–based medical image retrieval has been proposed
as a technique that allows not only for easy access to images
from the relevant literature and electronic health records
but also for training physicians, for research and clinical
decision support. The bag–of–visual–words approach is a
widely used technique that tries to shorten the semantic
gap by learning meaningful features from the dataset and
describing documents and images in terms of the histogram
of these features. Visual vocabularies are often redundant,
over–complete and noisy. Larger than required vocabularies
lead to high–dimensional feature spaces, which present im-
portant disadvantages with the curse of dimensionality and
computational cost being the most obvious ones. In this
work a visual vocabulary pruning technique is presented.
It enormously reduces the amount of required words to de-
scribe a medical image dataset with no significant effect on
the accuracy. Results show that a reduction of up to 90%
can be achieved without impact on the system performance.
Obtaining a more compact representation of a document
enables multimodal description as well as using classifiers
requiring low–dimensional representations.

Categories and Subject Descriptors
I.4.8 [Computing Methodologies]: Image Processing and
Computer Vision; H.3.3 [Information Systems]: Infor-
mation Storage and Retrieval—Information Search and Re-
trieval .

Keywords
Bag of visual words, language modelling, medical image re-
trieval
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1. INTRODUCTION
Image retrieval and image classification have been ex-

tremely active research domains with hundreds of publica-
tions in the past 20 years [1, 2, 3]. Content–based image
retrieval has been proposed for diagnosis aid, decision sup-
port and enabling similarity–based easy access to medical
information [4, 5].

One of the main domains of image retrieval has been the
medical literature with millions of images being available
[6, 7]. ImageCLEFmed1, an annual evaluation campaign
on retrieval of images from the biomedical open access lit-
erature [8]. In the ImageCLEF medical task, 12–17 teams
compare their approaches each year on a variety of search
tasks.

The Bag–of–Visual–Words (BoVW) is a visual description
technique that aims at shortening the semantic gap by parti-
tioning a low–level feature space into regions of the features
space that potentially correspond to visual concepts. These
regions are called visual words in an analogy to text–based
retrieval and the bag of words approach. An image can be
described by assigning a visual word to each of the feature
vectors that describe local regions of the images (either via a
dense grid sampling or interest points), and then represent-
ing the set of feature vectors by a histogram of the visual
words. One of the most interesting characteristics of the
BoVWs is that the set of visual words is created based on
the actual data and therefore only concepts present in the
data will be part of the visual vocabulary [9].

The creation of the vocabulary is normally based on a
clustering method (e.g. k–means, DENCLUE) to identify
local clusters in the feature space and then assigning a vi-
sual word to each of the cluster centers. This has been in-
vestigated previously, either by searching for the optimal
number of visual words [10], by using various clustering al-
gorithms [11] instead of the k–means or by selecting interest
points to obtain the features [12].

Although the BoVW is widely used in the literature [13,
14] there is a strong performance variation within similar ex-
periments when considering different vocabulary sizes [10].
In this paper, we hypothesize that this variance of the BoVW
method is strongly related to the quality of the vocabulary
used, understanding quality as the ability of the vocabulary

1http://www.imageclef.org/



to accurately describe useful concepts for the task. There-
fore, we try to reduce the size of the vocabulary without
reducing the performance of the method. The use of su-
pervised clustering [15, 16] to force the clusters to a known
number of classes was also considered as an option but it is
against the notion of learning a variety of concepts present
in the data. Instead, we compute the latent semantic con-
cepts in the dataset in an unsupervised way by analyzing
the probability of each word to occur. This allows to ex-
tract concepts from a combination of various visual word
types, since the concepts are discovered based on the prob-
ability of co–occurrence of a set of visual words regardless
of their origin. The resulting reduced vocabularies present
two benefits over the full ones. First, a reduction of the
descriptors leads to reduction of the computational cost of
the online phase of retrieval but also in the offline indexing
phase. This reduction becomes important in the context of
large–scale databases or Big Data. The second benefit of the
approach is that by removing non–meaningful visual words,
the dataset description becomes more compact. A compact
representation makes it easier to use neighbourhood–based
classifiers, which tend to fail in high dimensional feature
spaces due to the curse of dimensionality.

The rest of the paper is organized as follows: Section 2 ex-
plains in details the materials and methods used with focus
on the data set, the probabilistic latent semantic analysis
and how it is used to remove meaningless visual words from
the vocabulary. Section 3 contains factual details of results
of the experiments run on the dataset, while Section 4 dis-
cusses them. Conclusions and future work are explained in
Section 5.

2. MATERIALS AND METHODS
In this section, further details on the data set and the

techniques employed are given.

2.1 Data set
Image modality is one of the characteristics of medical

image retrieval that practitioners would like to see included
in existing systems [17]. Medical image search engines such
as GoldMiner2 and Yottalook3 contain modality filters to
improve retrieval results. Whereas DICOM headers often
contain metadata that can be used to filter modalities, this
information is lost when exporting images for publication in
journals or conferences where images are stored as JPG, GIF
or PNG files. In this case visual appearance is key to identify
modalities or the caption text can be analyzed for respective
keywords to identify modalities. The ImageCLEFmed eval-
uation campaign contains a modality classification task that
is regarded as an essential part for image retrieval systems.
In 2012, the modality classification data set contained 2,000
images from the medical literature organized in a hierarchy
of 31 categories [18]. Figure 1 shows the hierarchical struc-
ture of modalities. All images in the dataset belong to a
single leaf node in the hierarchy.

The modality classification dataset is divided into two sub-
sets of 1,000 images each, one for training and one for test-
ing. The training set and its corresponding ground truth
are made public for the groups to train and optimize their
methods but the comparison is performed on a test set of

2http://goldminer.arrs.org/
3http://www.yottalook.com/

Figure 1: Hierarchy of modalities or image types
considered in the modality classification task.

which the ground truth is not known by the groups. Fig-
ure 2 shows the distribution of images across modalities in
the training and test sets.
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Figure 2: Distribution of images across modalities
for the modality classification training and test sets.

Besides modality classification, an image retrieval task is
also performed during the benchmarking event where inde-
pendent assessors judge the relevance of each document in
the pool of results submitted by the groups. The retrieval
task is performed on a dataset containing the full Image-
CLEFmed data set, which in 2012 consisted of more than
306,000 images.

Both data sets were used in the experiments described in
this article. Methods were first tested on the modality clas-
sification data set (training and testing) to investigate the
effect of parameters on the system. Then, fewer parameter
combinations were tested on the retrieval task with a larger
data base.

2.2 Descriptors
In this section, the descriptors used in our experimental

evaluation are presented. Scale Invariant Feature Transform
(SIFT) and Bag–of–Colors (BoC) were chosen as images de-
scriptors.



2.2.1 SIFT
In this work, images are described with a BoVW based

on their SIFT [19] descriptors. This representation has been
commonly used for image retrieval because it can be com-
puted efficiently [14, 20, 21]. The SIFT descriptor is invari-
ant to translations, rotations and scaling transformations
and robust to moderate perspective transformations and
illumination variations. SIFT encodes the salient aspects
of the greylevel–images gradient in a local neighbourhood
around each interest point.

2.2.2 Bag of Colors
BoC is used to extract a color signature from the im-

ages [22]. The method is based on BoVW image represen-
tation, which facilitates the fusion with the SIFT–BoVW
descriptor. The CIELab4 color space was used since it is
a perceptually uniform color space [23]. A color vocabu-
lary C = {c1, . . . , c100}, with ci = (Li, ai, bi) ∈ CIELab, is
defined by automatically clustering the most frequently oc-
curring colors in the images of a subset of the collection con-
taining an equal number of images from the various classes.

The BoC of an image I is defined as a vector BoC =
{c̄1, . . . , c̄100} such that, for each pixel pk ∈ I:

c̄i =

P∑
k=1

P∑
j=1

gj(pk)

with P the number of pixels in the image I, where

gj(p) =

{
1 if d(p, cj) ≤ d(p, cl)
0 otherwise

(1)

and d(x, y) is the Euclidean distance between x and y.

2.3 Vocabulary pruning using probabilistic la-
tent semantic analysis

2.3.1 Probabilistic latent semantic analysis
Visual words are often referred to as an extension of the

bag of words technique used in information retrieval from
textual to visual data. Similarly, language modelling tech-
niques have also been extended from text to visual words–
based techniques [24, 25].

Latent Semantic Analysis (LSA) [26] is a language mod-
elling technique that maps documents to a vector space of
reduced dimensionality, called latent semantic space, based
on a Singular Value Decomposition (SVD) of the terms–
documents co–ocurrence matrix. This technique was later
extended to statistical models, called Probabilistic Latent
Semantic Analysis (PLSA), by Hofmann [27]. PLSA re-
moves restrictions of the purely algebraic former approach
(namely, the linearity of the mapping).

Hofmann defines a generative model that states that the
observed probability of a word or term wj , j ∈ 1, . . . ,M
occurring in a given document di, i ∈ 1, . . . , N , is linked to a
latent or unobserved set of concepts Z = {z1, . . . , zK} that
happen in the text:

P (wj |di) =

K∑
k=1

P (wj |zk)P (zk|di). (2)

4CIELab is a color space defined by the International
Commission on Illumination (Commission Internationale de

l’Éclairage) describing all colors visible for humans while
trying to mimic the nonlinear response of the eye.

The model is fit via the EM (Expectation–Maximization)
algorithm. For the expectation step:

P (zk|di, wj) =
P (wj |zk)P (zk|di)∑K
l=1 P (wj |zl)P (zl|di)

. (3)

and for the maximization step:

P (wj |zk) =

∑N
i=1 n(di, wj)P (zk|di, wj)∑M

m=1

∑N
i=1 n(di, wm)P (zk|di, wm)

, (4)

P (zk, di) =

∑M
j=1 n(di, wj)P (zk|di, wj)

n(di)
. (5)

where n(di, wj) denotes the number of times the term wj

occurred in document di; and n(di) =
∑

j(di, wj) refers to
the document length.

These steps are repeated until convergence or until a ter-
mination condition is met. As a result, two probability ma-
trices are obtained: the word–concept probability matrix
WM×K = (P (wj |zk))j,k and the concept–document proba-
bility matrix DK×N = (P (zk|di))k,i.

2.3.2 PLSA for visual words
The PLSA technique only requires a word–document co–

occurrence matrix and therefore the technique can be re-
ferred to as feature–agnostic. Since it does not set any re-
quirements on the nature of the low level features that yield
these co–occurence matrices (other than being discrete), the
extension to visual words is simple. PLSA in combination
with visual words for classification purposes was also applied
in [28, 29].

In our approach, images are described in terms of a BoC
in the CIELab color space and a BoVW based on SIFT
descriptors. Therefore, the dataset can be described using
the following co–occurrence matrices:

CN×NC = (n(di, cj))i,j , (6)

SN×NS = (n(di, sl))i,l, (7)

where N is the number of images in the dataset, NC the
length of the color vocabulary, NS the length of the SIFT–
based vocabulary and n(di, cj) or n(di, sl) is the number of
occurrences of the color word cj or SIFT word sl occurring
in the image di.

2.3.3 Vocabulary pruning
The key idea in our approach is that not only the color

and SIFT vocabularies are over–complete and redundant in-
dividually for the dataset, but they may as well contain vi-
sual words that model the same latent concepts. Therefore,
a full color–SIFT representation of the dataset is obtained
by concatenating the two matrices C and S into a single
N × (NC + NS) visual features matrix V .

The matrix V is then analysed using the PLSA tech-
nique with a varying number of concepts K and the re-
sulting visual word–concept conditional probability matrices
W(NC+NS)×K are used to find the meaningless visual words
that need to be removed from the vocabulary.

A visual word is considered meaningless if its conditional
probability is below the significance threshold Tk for every
latent concept. Since each concept can be linked to a dif-
ferent number of visual words, the significance threshold is
not an absolute value, but relative to each concept. In our
approach, Tk takes the value of the pT –th percentile of each



concept. This allows to keep only the (100 − pT )% most
significative visual words for each concept while removing
the remaining visual words. A visual word can be signi-
ficative for several concepts (polysemic words) and several
visual words can be equally significative for a given concept
(synonyms). These factors, which are common in language
modelling, have as a result that the vocabulary reduction
cannot be estimated directly using the value of pT , since
it depends on the distribution of synonyms and polysemic
words in the experimental data model.

The number of latent concepts as well as the value of
the significant percentile are parameters of the technique
presented in this paper. Section 3 explains the results of the
experimental evaluation of the technique for various values
of K and pT .

2.4 Experiments
Several experiments were run to evaluate the performance

of the vocabulary pruning technique. In this section, the
experiments are described.

2.4.1 Classification with a truncated descriptor
Preliminary experiments on the vocabulary pruning tech-

nique over the training set were based on removing mean-
ingless visual words from the descriptors but not from the
vocabulary (i.e. the histogram values for meaningful vi-
sual words remain the same and therefore histograms are
no longer normalized).

By running a 2–fold cross validation on the modality clas-
sification training set, the effect of the parameters K (num-
ber of latent concepts) and pT (significant percentile thresh-
old) was investigated. All descriptors were computed using
the full vocabulary and visual words below the significance
threshold were later removed from the descriptors. No fusion
rules were applied to the SIFT–BoVW and BoC descriptors.

2.4.2 Classification with a reduced vocabulary
In this experiment, meaningless visual words were removed

from the vocabulary, histograms were recomputed and there-
fore stayed normalized. Due to the presence of very un-
balanced classes in the dataset, experiments included 2–
fold cross–validation on the training set and cross–validation
based on separate training and test set. The same experi-
ments were run with the full vocabularies.

Classification using the SIFT–BoVW and BoC can benefit
from a fusion technique to include color and texture infor-
mation. The similarity scores were calculated using both
descriptors separately and the CombMNZ fusion rule [30]
was used to obtain final scores. Images were classified using
a weighted k–NN (k–Nearest Neighbors) voting [31]. Exper-
iments were run with various k values for the voting.

2.4.3 Retrieval with a reduced vocabulary over the
complete data set

In this experiment, the complete ImageCLEF dataset for
medical images was indexed for retrieval. The number of
images in the dataset (306,000) is sufficiently large to al-
low measures on speed gain when reducing the vocabulary.
Retrieval was performed using the fusion rule described in
Section 2.4.2. The retrieval experiment consisted of 22 top-
ics (each consisting of 1 to 7 query images), corresponding
to the ImageCLEF 2012 medical track.
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Figure 3: Evaluation of descriptor truncation over
the modality classification training set using cross–
validation. 1–NN classification was performed for a
varying number of latent concepts K and significant
percentile pT

3. RESULTS
In this section a summary of the results for each experi-

ment is given.

3.1 Truncated descriptor
This section explains the results of the experiment de-

scribed in Section 2.4.1. Since the descriptor requires the
full vocabulary before performing the truncation of mean-
ingless words no speed gain in the offline phase was obtained.

Figure 3(a) shows the results of the accuracy obtained
using a 1–NN classifier compared to the effect of truncating
descriptors on vocabulary size in Figure 3(b). The number
of latent concepts K varies from 10 to 100 in steps of 10 and
the significant percentile threshold for each concept pT from
1 to 99.

The effect of increasing the significant percentile is much
stronger on the number of visual words used than on the
classification accuracy. Similarly, the number of latent con-
cepts has a limited impact on accuracy while having a strong
impact on the vocabulary size. Rather unsurprisingly, the
fewer latent concepts considered, the easier it becomes to
find meaningless visual words. Also, vocabulary sizes tend
to be more similar for various K values when pT is high.

Statistical significance tests were run to compare the re-
sults distributions using the truncated descriptors. These



tests failed to show a statistically significant difference be-
tween classification using the full descriptor or any of the
reduced descriptors over the training set.

3.2 Reduced vocabulary over modality classi-
fication training and test sets

This section contains a summary of the results of the ex-
periments described in Section 2.4.2.

Table 1 contains a summary of the best results for a signif-
icant percentile pT = 80 and a varying number of concepts.
It also includes the results obtained with the full vocabulary
using the same classifier. Although it is not shown in the
table, all of the removed words for pT = 80 belonged to the
SIFT–BoVW vocabulary.

Latent
Concepts

Removed
words

Accuracy
(reduced

vocabulary)

Accuracy
(complete

vocabulary)
10 27.22% 44.20% 43.79%
20 17.16% 44.20% 43.79%
30 6.8% 43.99% 43.79%
40 3.25% 43.79% 43.79%
50 2.96% 43.99% 43.79%
60 2.07% 43.99% 43.79%
70 1.18% 43.79% 43.79%
80 0.59% 43.79% 43.79%
90 0.59% 43.79% 43.79%
100 0.3% 43.79% 43.79%

Table 1: Best classification results (varying the k–
NN voting) over the training set for varying number
of latent concepts and a fixed significant percentile
pT = 80. The last column contains the accuracy when
using the complete vocabulary with the same clas-
sifier. Results are shown in bold when a reduced
vocabulary produces better or equal classification
than the complete vocabulary.

Table 2 contains the corresponding results for a 99–percentile
as significance threshold. In this experiment meaningless
words were found in both the BoC and the SIFT–BoVW
vocabularies.

Latent
Concepts

Removed
words

Accuracy
(reduced

vocabulary)

Accuracy
(complete

vocabulary)
10 91.72% 41.55% 41.34%
20 84.32% 44.20% 43.18%
30 78.99% 43.79% 42.16%
40 72.78% 45.01% 41.34%
50 67.75% 44.81% 42.16%
60 61.83% 44.60% 42.97%
70 59.47% 43.81% 42.97%
80 54.73% 45.62% 42.97%
90 53.85% 43.99% 42.97%
100 50% 43.79% 42.97%

Table 2: Best classification results (varying the k–
NN voting) over the training set for varying number
of latent concepts and a fixed significant percentile
pT = 99. The last column contains the accuracy when
using the complete vocabulary with the same clas-
sifier. Results are shown in bold when a reduced
vocabulary produces better or equal classification
than the complete vocabulary.

Tables 3 and 4 contain the corresponding results over the
test set when performing cross–validation with separate test

and training sets. The vocabularies used are the same as
those from Tables 1 and 2.

Latent Concepts Accuracy
(reduced

vocabulary)

Accuracy
(complete

vocabulary)
10 40.14% 38.94%
20 39.24% 38.94%
30 39.54% 38.64%
40 39.24% 38.24%
50 39.34% 38.94%
60 39.24% 38.94%
70 39.24% 38.94%
80 39.24% 38.94%
90 39.24% 38.94%
100 39.24% 38.94%

Table 3: Best classification results (varying the k–
NN voting) over the test set for varying number
of latent concepts and a fixed significant percentile
pT = 80. The last column contains the accuracy when
using the complete vocabulary with the same clas-
sifier. Results are shown in bold when a reduced
vocabulary produces better or equal classification
than the complete vocabulary.

Latent Concepts Accuracy
(reduced

vocabulary)

Accuracy
(complete

vocabulary)
10 36.44% 37.94%
20 36.24% 37.94%
30 36.84% 38.64%
40 38.44% 38.94%
50 37.24% 38.64%
60 37.34% 38.94%
70 38.94% 38.94%
80 37.94% 38.94%
90 38.94% 38.94%
100 39.44% 38.94%

Table 4: Best classification results (varying the k–
NN voting) over the test set for a varying number
of latent concepts and a fixed significant percentile
pT = 99. The last column contains the accuracy when
using the complete vocabulary with the same clas-
sifier. Results are shown in bold when a reduced
vocabulary produces better or equal classification
than the complete vocabulary.

3.3 Reduced vocabulary for the retrieval task
Based on the results in Section 3.2, two vocabularies were

selected for obtaining results in the ImageCLEFmed retrieval
task. The smallest vocabulary corresponds to the pT = 99
and 10 latent concepts vocabulary, whereas the most accu-
rate vocabulary was the pT = 80 and 10 latent concepts.

Table 5 contains a summary of the results in terms of
time required for indexing the complete dataset for the most
accurate configuration (pT = 80 and 10 latent concepts) ,
the smallest vocabulary (pT = 99 and 10 latent concepts)
and the complete vocabulary.

Table 6 shows the results when performing the retrieval
task on the complete ImageCLEFmed 2012 dataset with the
selected vocabularies for each of the 22 topics or queries.



(a) Average time per image for the
reduced vocabulary with parameters
pT = 99 and K = 10.

Feature type Index time Size
BoC 2.14 s 19 words

SIFT–BoVW 0.74 s 9 words

(b) Average time per image for the
reduced vocabulary with parameters
pT = 80 and K = 10.

Feature type Index time Size
BoC 4.86 s 100 words

SIFT–BoVW 1.15 s 146 words

(c) Average time per image for the com-
plete vocabulary.

Feature type Index time Size
BoC 4.86 s 100 words

SIFT–BoVW 1.67 s 238 words

Table 5: Average indexing time per image for the
smallest vocabulary, the most accurate and the com-
plete vocabulary.

4. DISCUSSION
As shown in Figure 3 the impact of PLSA–based prun-

ing has a stronger effect on the size of the vocabulary than
on the performance of the classifiers. Table 2 shows that
a vocabulary reduction of up to 91.72% can be obtained
with a comparable accuracy for the same classifier. For the
99–percentile value, the best classification method with the
reduced vocabulary always obtains higher accuracy than the
same classification method on the full vocabulary.

However, significance tests have failed to show a statis-
tically significant difference between the various accuracy
results obtained. Therefore, the main contribution of this
work is a method that can enormously reduce visual word vo-
cabularies while obtaining a comparable (and often slightly
higher) accuracy.

Another important aspect of the results is that the PLSA–
based pruning finds a more meaningful vocabulary than the
SIFT–BoVW one. Whereas in the complete vocabulary the
SIFT–based words outnumbered the color words by a factor
of 2.38, this relationship is inverted in the smallest vocab-
ulary where there are more than two color words for each
SIFT–based word.

Results in Table 5 show that the reduction of the indexing
time is smaller than the reduction in the number of words.
However, the smallest vocabulary presents an indexing time
55.9% lower than the complete vocabulary. Studies have
shown that the reduction of the number of features used as
a descriptor can increase the speed of online retrieval [32].
This is confirmed in Table 5(c), with retrieval times up to
64% lower when using the smallest vocabulary.

Results in Tables 1 to 4 show that the performance is much
better for modality classification tasks than for retrieval in
the complete ImageCLEFmed dataset (see Table 6), proba-
bly due to the size of the training set used (1000 images) in
comparison with the 306000 images in the complete dataset.
For the retrieval task, the vocabularies present a comparable
performance in terms of recall, being the pT = 80, K = 10
vocabulary slightly better than the others. However, mean

(a) Retrieval results for each vocabulary and various
queries. Results with higher recall are shown in bold.

Relevant
items

Items
retrieved
(complete
vocabu-
lary)

Items
retrieved
(pT = 80,
K = 10)

Items
retrieved
(pT = 99,
K = 10)

Topic 1 21 7 8 8
Topic 2 33 21 20 16
Topic 3 47 35 35 29
Topic 4 22 15 16 15
Topic 5 58 7 7 4
Topic 6 13 7 7 8
Topic 7 11 2 2 3
Topic 8 6 3 3 2
Topic 9 2 0 0 0
Topic 10 17 6 6 6
Topic 11 72 17 19 8
Topic 12 27 5 6 9
Topic 13 147 50 48 38
Topic 14 521 57 56 48
Topic 15 0 0 0 0
Topic 16 3 1 1 1
Topic 17 7 0 0 2
Topic 18 4 0 0 0
Topic 19 6 3 3 2
Topic 20 5 0 0 0
Topic 21 49 5 5 7
Topic 22 19 7 7 5
Total 1090 248 249 211

(b) Mean Average Precision
(MAP) across all topics.

Vocabulary used MAP
Complete vocabulary 6.51%

pT = 80, K = 10 6.52%
pT = 99, K = 10 1.51%

(c) Average execution times of the online phase
for a single query image.

Vocabulary used Online retrieval time
Complete vocabulary 125 s

pT = 80, K = 10 107 s
pT = 99, K = 10 45 s

Table 6: Results of retrieval experiments for each
vocabulary.

average precision strongly varies between large vocabularies
and the smallest vocabulary (pT = 99, K = 10).

It can be discussed that de benefits of the PLSA–based
pruning presented in this paper are not the ability to dis-
cover new and meaningful visual words for retrieval but the
ability to recognize those visual words that convey most of
the meaning among those present in the vocabulary.

5. CONCLUSIONS AND FUTURE WORK
In this paper a vocabulary pruning method based on prob-

abilistic latent semantic analysis of visual words for medi-
cal image retrieval and classification is presented. The se-
lection of optimal visual words is performed by removing
visual words with a conditional probability over all learnt
latent concepts that is below a given threshold. The vocab-
ulary pruning process is completely unsupervised, since the
learning of the concepts is performed without taking into
consideration the number of classes or what is the actual
class assigned to each image. Therefore, it can be used to
reduce massive fine–grained vocabularies to smaller vocab-



ularies that contain only the most meaningful visual words
even before training the classifier. To obtain these fine–
grained vocabularies, simple clustering algorithms can be
used to produce a large number of small clusters that later
will be pruned using the methods explained in this paper.
Smaller clusters are supposed to encode subtle visual differ-
ences among images, which will be preserved by the PLSA–
based pruning if they are meaningful for some latent con-
cept. Future applications of the technique also include the
use of multiple vocabularies that can be merged and pruned
as a single set of discrete features.

We are currently extending the techniques to images ob-
tained for clinical use, where the use of low–dimensional
descriptors can achieve fast and accurate characterization
of large–scale datasets of high–dimensional (3D, 4D, multi-
modal) images. This is expected to lead to different results
as for the modality classification tasks and retrieval tasks
from the literature color plays a more important roles than
for most clinical images. Still, the possibility to reduce vi-
sual vocabularies strongly can lead to larger base vocabu-
laries that can potentially capture the image content much
better but can then be reduced for efficient retrieval.
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classïıň ↪Acation tasks. In Working Notes of CLEF 2012
(Cross Language Evaluation Forum), September 2012.

[9] Leibe Bastian Grauman, Kristen and. Visual Object
Recognition. 2011.

[10] Antonio Foncubierta-Rodŕıguez, Adrien Depeursinge,
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