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Abstract: 
 
In the context of pervasive healthcare systems there is a growing need of services that are 
constantly available to the patients accessing them. 
To address this issue, in this paper we present a distributed pervasive infrastructure that is 
capable of self-healing one or more of its parts when an external event causes a 
disruption of the service in the areas covered by the pervasive system. We utilise 
approaches from multi-agent systems (MASs) such as communication, coordination, 
planning and agent environments to create a distributed system whose emergent 
behaviour shows the capability to heal itself even if 50% of the system is not functioning 
due to external causes. 
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1 Introduction 
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Pervasive Healthcare [Varshney, 2009] focuses on bringing healthcare everywhere, 
breaking the boundaries of hospital healthcare. In [Varshney, 2009] Varshney defines 
Personal Health Systems (PHSs) as complex systems where multiple components interact 
to allow large scale monitoring of physiological data of heterogeneous patients. Two 
main limitations affect existing PHSs: (a) failures of the distributed system are never 
taken into consideration and (b) the system topology is statically defined. Consequently, 
PHSs need fault tolerance mechanisms as system downtimes may be dangerous for 
patients relying on them. In PHSs 
centralised fault tolerance should be avoided as it may create a bottleneck due to the large 
amount of data processed in PHSs and because it proposes a single point of failure.  
Also, fault-tolerance in PHSs should not be achieved by what G �artner defines in [G �artner, 
1999] as space-based redundancy, which improves the 
resilience of an infrastructure by replicating components, an expensive practice for 
distributed systems like PHSs that serve possibly many patients at once and that have 
already distributed nodes to load balance the traffic associated with such patients, 
requiring a trade-off between the number of patients served and the resiliance of the 
system. 
In this paper we address PHSs fault tolerance via the self-healing paradigm [Ghosh et al., 
2007] that focuses on what G �artner defines as time-based redundancy, which, instead of 
replicating components, replicates components behaviours to ensure that if a component 
fails an existing component can substitute it. Mikic-Rakic et al. in [Mikic-Rakic et al., 
2002] identified the following properties as necessary for self-healing systems: 
adaptability, dynamicity, awareness, observability, autonomy, robustness, distributability, 
mobility and traceability.  
Multi agent systems (MASs) [Wooldridge, 2002] represent a valid abstraction to model 
such systems and fulfill the self-healing paradigm requirements. In particular, the 
adoption of MASs facilitates the transition from a centralised computing model to a 
decentralised one where thousands of autonomous agents interact to achieve a common 
goal. The use of the concept of agent facilitate the modeling of such infrastructures with 
respect to lower level abstractions such as processes, threads or Web services, this 
because agents are statefull entities, programmed with a goal and a plan to achieve the 
goal proactively. Moreover, the concept of agent environment [Weyns et al., 2007] has 
been accepted as a useful abstraction to mediate the interaction between agents 
and to model how the agents perceive resources and interfaces that they utilise in their 
interaction. 
In [Bromuri et al., 2011b, Krampf et al., 2011, Bromuri et al., 2010a] we proposed a PHS 
based on a distributed agent environment built on the GOLEM platform [Bromuri and 
Stathis, 2009], to support intelligent agents monitoring pregnant women affected by 
gestational diabetes. Amongst the assumptions proposed in [Bromuri et al., 2011b, 
Krampf et al., 2011, Bromuri et al., 2010a], there is the mapping between the agent 
environment represented as a distributed rectangular grid and a real environment 
representing a city. In this paper we extend the system presented in [Bromuri et al., 
2011b, Krampf et al., 2011, Bromuri et al., 2010a] by defining a novel coordination and 
planning algorithm that agents use to detect faults and recover the system functionalities. 
The contributions of this paper are: a) we introduce a practical approach based on agents 
to handle fault tolerance in PHSs; b) we split responsibilities between the agents and the 
agent environment thus simplifying the behaviour of the agents to fulfill the requirements 
of self-healing systems; c) we illustrate how a compact declarative specification for the 
agents behaviour can deal with multiple failures of the agent environment in parallel. d) 
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We introduce a load balancing technique for persisted agents which allows the PHS to 
scale up better. 
The reminder of this paper is structured as follows: Section 2 describes the 
background necessary to understand this paper; Section 3 describes our PHS self-healing 
capabilities; Section 4 evaluates our approach; Section 5 discusses relevant related work; 
finally Section 6 concludes this paper and presents future directions. 
 
2 Personal Health System Definition and Background 
 
In [Bromuri et al., 2010a, 2011b, Krampf et al., 2011] we presented a Personal Health 
System (PHS) to monitor Gestational Diabetes. The aim of a personal health system is to 
speed up the delivery of medical care, by changing the way in which patients and doctors 
interact. The logic architecture of our PHS is built in three layers shown in Fig. 1. At the 
Mobile Interface layer, the patient can produce her physiological values and symptoms 
by means of a mobile phone application. 
Such data is then sent to an Agent Environment (AE) where intelligent expert agents 
receive the data to perform reasoning about the patient status. Such an agent environment 
can be distributed in multiple hosts, or even be contained in a single host, according to 
the amount of patients monitored.  
The AE component is also subdivided in cells associated to a particular area of a city, as 
we imagine the patients to be uniformely distributed within the city. Finally the Patient 
Management System allows the doctors to visualise the patient's data, to modify its 
treatment and to visualise the alerts produced by the AE. Fig. 2 shows such an interface. 
In particular, through the interface the doctors can observe the evolution of the patient's 
physiological values in response to the treatments and react promptly. 

 
Figure 1: Personal Health System Architecture. 

 
To create a self-healing pervasive healthcare agent environment, we decided to take our 
PHS and to extend it to deal with fault tolerance with respect to cell disruptions. To 
extend such a system, we made use of the GOLEM agent platform [Bromuri and Stathis, 
2009, Bromuri et al., 2010b] whose main abstractions are agents, cognitive entities, 
objects, reactive entities available to the agents as resources, and containers, declaratively 
programmed spaces where agents and objects are situated in possibly distributed settings. 
The GOLEM agent infrastructure was chosen because there have been already attempts 
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to use it in pervasive systems [Bromuri et al., 2010b,a] and because it considers the agent 
environment as a first class abstraction, thus allowing the agents and the objects residing 
in it to manipulate its state. 
It is important to clarify that with the term environment we mean the world that is 
external to the agents and that the agents can inspect by using the agent environment  
[Weyns et al., 2007]. On one hand we define the agent environment as an entity that 
mediates the interaction between the agents and resources deployed in the system, 
working as medium of interaction. On the other hand the agent environment hides to the 
agents the complexity of dealing with the state of the environment, by providing standard 
interfaces and standard descriptions to the resources in the external environment.

 
Figure 2: The doctor's interface. 

 
In the scope of this paper we use environment  in terms of a place or a set of places 
delimited by borders defined in terms of longitude and latitude in the real environment. 
Longitude and latitude are mapped to a distributed agent environment for monitoring 
purposes, where every node of the distributed agent environment has an assigned area of 
the real environment. GOLEM is based on the Ambient Event Calculus [Bromuri and 
Stathis, 2009], a particular dialect of the Event Calculus [Kowalski and Sergot, 1986] that 
can handle the interaction between distributed containers. Such a formalism allows 
containers to mediate the interaction in distributed settings. The main predicates of this 
formalism are discussed in Fig. 3, following a Prolog-like syntax where we represent 
predicates with an lower case letter, variables with an upper case letter. For example, the 
term initiates/5 denotes a predicate with name initiates  and arity 5. 
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Figure 3: The AEC Predicates. 

 
Furthermore, GOLEM entities are specified as complex C-logic structures 
[Chen and Warren, 1989] that evolve over time. C-logic is a formalism that has a direct 
translation to first order logic and it is convenient to describe the structure of complex 
entities such as agents, objects and containers. We can express and describe the state of a 
container at a given time by means of the following C-logic structure: 

container:c1[ 
latitude ⇒Lat, 
longitude ⇒  Lon, 
side ⇒  50, 
state ⇒  up, 
neighbours ⇒fcontainer:c2,container:c3g 

] 
 which means that a container represent a location, or cell, of the real environment, it is 
associated with a latitude Lat and a longitude Lon , its state is up , and it covers a square 
that has a side of 50 meters. The following two AEC rules (see Bromuri and Stathis 
[2009] for a more detailed description): 
 
happens(Event,T)  ←attempt(Event,T), possible(Event,T). 
happens(Event, T) ←  attempt(Event, T), necessary(Event, T). 

 
specify that an action in the GOLEM agent environment happens only if it has been 
attempted and it is possible or necessary, where possible/2  and necessary/2 rules are 
application dependent rules. In other words, possible/2  rules specify what are the actions 
that is possible to perform in the environment given its  current (possibly distributed 
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state), while the necessary/2  rules specify what are the actions that happens as a 
consequence to previous events. 
Moreover, to provide the mediation necessary to handle events in the distributed setting 
in Bromuri and Stathis [2009] we presented the locally_at/8, neighbouring_at/9 and 
regionally_at/9 primitive predicates to link the state of distributed containers, following 
a logic programming approach. Briefly, the definition of locally at is as follows: 
 
locally_at(CId, Path, Path_, Id, Cls, Att, V, T) ←           locally_at(CId, Path, Path_, Id, Cls, Att, V, T) ←   
holds_at(CId, container, entity of, Id, T),   instance_of(SCId, container, T), 
holds_at(Id, Cls, Att, V, T),    holds_at(SCId, container, super, CId, T), 
append(Path, [CId], Path_).    append(Path, [CId], NewPath), 

locally_at(SCId, NewPath, Path_, Id, Cls, Att,V,T). 
 

 The definition of locally_at/8 states that the state of an entity can be inferred either from 
the top-level container or from a sub-container. If the states is inferred in the top-level 
container, then the predicate holds_at/5 is applied to infer the attribute Att  of value V  of 
an entity of class Cls and identifier Id. If the first predicate fails, then the second 
predicate moves the computation in a sub-container. In this way containers can be 
recursively embedded inside other containers as objects, according to the topology 
needed, and deployed on different hosts. The neighbouring_at/9 and the regionally_at/9  
predicates have a similar behaviour but allow to query adjacent and super-containers 
respectively. Finally, to specify how the state of an entity modifies over time, we utilise 
initiates/5 and terminates/5 rules. For example, the following initiates/5 rule specifies 
when the position of an agent changes to the one the agent moves to: 
 
initiates(E, avatar, A, position, Pos) ←  do:E [actor ⇒  A, act ⇒  move:M [destination) Pos]]. 
  
The complete description of the event's effects also requires to terminate the attribute 
holding the old position of the agent by means of a terminate/5 rule. 
In the current prototype the agent environment takes care of pairing agents and avatars as 
well as defining the mobility rules (i.e. what are the conditions that move an agent from 
one container to another). We define the following rules for mobility purposes: 
 
possible(E,T) ←      possible(E,T) ←  
              move:E[actor⇒avatar:A, move ) Pos],                  instance of(Id,topology,T), 
              instance_of(Id,topology,T),                   holds_at(Id,topology,borders,Borders,T), 
              holds_at(Id,topology,borders,Bdr,T),                  outside_borders(Bdr, Pos), 
              inside_borders(Bdr, Pos).                                         neighbouring_at(this, [], [C], 1, Id,  

                 topology,  borders, Bdr, T),     
                     inside_borders(Bdr,Pos). 
the first one states that it is possible to move in the space represented by a container only 
if this space is within the borders controlled by the container. Otherwise, the second rule 
specifies that it is possible to move outside the borders only if there is another container 
that is responsible for a certain area where the patient is currently moving. The following 
AEC rules: 
necessary(E, T) ←       necessary(E, T) ←     

happens(E*, T),     happens(E*, T), 
deploy:E_[deploy ⇒avatar:Av],    disconnect:E_[actor ⇒A, new container  ⇒  C], 

                     not neighbouring_at(this, [], [C], 1, Av, caretaker, , T),          holds_at(A,avatar,caretaker,Id,T), 
                     deploy:E[agent ⇒caretaker:A].                        physical_act:E[move_to ⇒  C, agent ⇒Id]. 
state respectively that whenever an avatar is deployed in the agent environment (event E* 
), also its caretaker agent is deployed (event E ), and that whenever an avatar disconnects 
from the agent environment to connect to a new container, the agent associated to the 
avatar is also serialised and moved to the new container. 
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Finally, a further necessary/2 rule defines that an avatar is moved to a different container 
when outside the boundaries of the current container, but we omit the details as it is 
simpler than the ones presented above. 
The main issue of the system described in [Bromuri et al., 2011b, Krampf et al., 2011, 
Bromuri et al., 2010a], as many other PHSs, is that it is statically defined and assumed to 
work, meaning that if a container fails, there is no procedure in place to deal with the 
failure and the area assigned to the container is not covered until an operator amends the 
issue. To provide a solution to this problem we introduced an infrastructure agent  for 
every container as we will discuss in the next Section. 
 

3 Extending GOLEM with Self-Healing Procedures 
 
In this paper we extend the PHS presented in [Bromuri et al., 2011a,b, Krampf et al., 
2011, Bromuri et al., 2010a] with self-healing procedures. The reason to perform this 
extension resides principally in the fact that a PHS should be almost constantly available 
to the patients accessing it. With the particular case of patients affected by diabetes, 
gestational diabetes or cardiovascular diseases, a downtime of several hours can have a 
serious impact on the effectivity of a treatment based on telemedicine. For example, if the 
downtime lasts hours, a patient with gestational diabetes may enter in a phase of poor 
glycemic control and consequently the baby may experience macrosomia, defeating the 
whole purpose 
of a telemedicine approach based on a PHS. 
 

 
Figure 4: Extensions to the System Architecture. 
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To extend our system with self-healing procedures, we introduced an infrastructure agent 
in every container of the distributed agent environment. Fig. 4 shows the details of the 
conceptual architecture of the GOLEM containers extended with the self-healing 
functionalities in relationship to their distributed topology. 
The infrastructure agents are capable to observe and perceive changes in the topology of 
the agent environment due to a failure and they are capable to devise simple plans to 
coordinate with neighbour agents in order to cover for the fault of one or more containers. 
The plans are instantiated and executed in parallel, to minimise the downtime, while the 
communication process taking place between the agents allows to minimise the excessive 
expansion of the cells ensuring that 
the workload is distributed amongst the neighbours of the dead cells. Moreover, we 
modified the behaviour of the distributed containers to re-route the messages exchanged 
between the agents according to the neighbourhood known in previous interaction, 
splitting in this way the responsibility to recover from the fault from the responsibility of 
dealing with the topology. The overall result is a system that is capable to handle the 
failure of a cluster of containers in the distributed agent environment and continue 
functioning even if with degraded functions until the normal behaviour of the system is 
restored. The rationale is a system that fulfills the requirements of self-healing systems: 
our system is adaptable to changes in the topology, it is observable as we are using a 
declarative approach to describe our entities, it is autonomous as we are utilising agents 
to deal with the failures and it is aware as we are using agents that plan and coordinate in 
a distributed environment. To handle a big number of connections per area, we further 
extended the GOLEM with load balancing features as shown in Fig. 5.

 
Figure 5: Load Balancing with GOLEM Containers. 

Such an architecture allows a super-container to split the loads incoming from multiple 
patient's requests in sub-containers. The sub-containers have then access to a resource 
which is a NO-SQL database containing the monitoring agents for the Personal Health 
System shown in Fig. 1. Such a resource is available to the agents in the agent 
environment in form of a GOLEM object which allows to retrieve serialized agents, put 
them into execution when the patient requires their services 
 
3.1 Physiological Values Storage in the Smartphone 
 
The patient's smartphone plays a role to ensure that the data are not lost when dealing 
with the self-healing agent environment. All physical values and symptoms are acquired 
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though a mobile application (see Fig. 6).

 
Figure 6: The Patient's Mobile Interface. 

Typically, the patient can insert up to six times per day the glucose values, 
twice per day the blood pressure and pulse values, as many times per day as preferred the 
symptoms experienced and the weight once per week. Current smartphone technology is 
capable of storing several gigabytes of data, consequently there is not a storage problem 
in the mobile phone. 
As a consequence, we utilize the patient's smartphone capabilities to store 
information by modelling a SQLite database for the physiological values and symptoms 
of the patients. This allows our patients to work on the smartphone also when there is not 
an active internet connection or when the agent environment is down due to maintenance 
issues. As shown in Fig. 7 the smartphone implements a protocol of interaction with the 
agent environment where the physiological values of the patient are deleted from the 
smartphone only when the agent environment acknowledge the reception of the data, 
meaning that the data has been successfully stored in the Patient Management System. 
 
3.2 The Containers Behaviour 
GOLEM containers are programmed declaratively, using the Ambient Event Calculus 
(AEC) [Bromuri and Stathis, 2009] formalism, an extension of the Event Calculus (EC) 
[Kowalski and Sergot, 1986], that handles the evolution of C-logic.
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Figure 7: The Smartphone Interaction with the Agent Environment. 

structures by means of events in distributed containers. GOLEM agents use a 
subscriber/publisher pattern for sensing the events happening in the containers. 
We extended the behaviour of the GOLEM containers with the propagate_at/2 predicate 
to handle the dispatching and propagation of events produced by agents in the distributed 
settings. The infrastructure agents become subscribers and publishers of ack and inform  
events, while the events dispatching is handled using the propagate_at/2  predicates. The 
propagate_at/2  predicate is specified as follows: 
 
propagate_at(ack:Event,T) ←  

happens(Event,T), Event[actor ) Agent, receivers ) Containers, known neighbours ⇒   NeighbourList], 
foreach(member(X,Containers),holds_at(X,neighbour,this,T)). 
 

propagate_at(inform:Event, T) ←  
Event[actor ⇒  Agent, receivers ⇒SubList, cover ⇒CBroken, randomvalue ⇒  Diceroll], 
Holds_at(this,neighbourhood list, List,T), subset(List,SubList), 
foreach(member(X,SubList), holds at(X,neighbour, CBroken,T)). 
initiates(Cid,container,neighbour, Origin, Ev) ,  
cover:Ev[actor ⇒  Agent[container ⇒  Origin], container ⇒  CBroken] 
time(Ev,T), holds_at(CBroken,neighbour,this,T). 

 
initiates(Cid, container,state, down, Ev) ) ←   notify_failure:Ev[actor ⇒  Agent, down ⇒   Cid]. 

  
where the happens/2 is an AEC predicate stating that an event has happened in the agent 
environment and holds_at/5  is an AEC predicate that provides an attribute value given 
an entity identifier (in this case this  represents the current container), the attribute name 
(in this case neighbourhood list ) and the time. The first rule mediates an ack event 
produced by an agent during the PHS normal behaviour and it states that whenever such 
an event happens, then this is propagated to all the receivers in the Containers  list. Inside 
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the ack  message, there is also the known neighbour containers list at a given time, so that 
every agent in the distributed topology can have knowledge of the neighbours of their 
direct neighbours. This is similar to the successor list approach of the CHORD P2P 
algorithm [Stoica et al., 2003], where given a successors list of lenght r , and a 
probability of disruption p  for a single node, then the probability of disruption for the 
CHORD ring is p^r, meaning that the ring resilience can be improved by increasing the 
successors list length. In our case, the probability that the PHSs cannot restore the area 
covered by a node is p^8, when keeping a list of neighbours of neighbours in a grid like 
topology, where if needed the resiliency of our PHS can be improved by increasing the 
neighbourhood knowledge. 
The second rule mediates disruptions happening in the distributed settings. 
Once an agent does not perceive ack events from a neighbour container, the agent sends 
an inform  event to all the containers that have a neighbouring relationship with the 
unresponsive container and it starts the healing procedure that we will discuss later.  
The containers behaviour has been modified with additional predicates to update the 
neighbours list, with the third and fourth rules specified as initiates/5  predicates, which 
respectively state that the current container is neighbour of another container if its 
infrastructure agent is covering for a dead neighbour and that when an agent does not 
receive an inform  event from a neighbour container at the right interval of time the 
neighbour is considered to be down when a notify failure  event is produced by the 
infrastructure agent. For the moment, the tasks of joining a network and redeploying a 
failed container are handled by a human actor who needs only to propagate manually one 
single message to the neighbourhood of the failed container in order to reset the network 
to its initial behaviour. 
 
3.3 The Infrastructure Agents 
 
A GOLEM agent consists of a declarative module embedded in an agent body, which is 
situated in a container to perceive the events happening in it. The infrastructure agent 
cognitive model is based on two cycles, one to process the events sensed by the body and 
one to plan and act in the environment. The pseudo code for the two agent mind cycles is 
reported in Figure 8 (CSP stands for Conditional-STRIPS-Planner, an extension of the 
STRIP planner [Fikes and Nilsson, 1971] to handle conditional plans). 
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Figure 8: The Agent Perception and Acting Cycles. 

The PERCEPTION-Cycle/1 reads the PERCEPTION-QUEUE/1 for percepts coming 
from the environment. Such percepts are used to update the knowledge base KB about 
the state of the containers that are known in the agent environment. The PERCEPTION-
Cycle/1 is thus a passive cycle which only reads events coming from the environment. A 
plan is represented in the agent mind as a C-logic object. For example, the following plan 
expressed in AEC: 
 
plan:p1[goal ⇒  cover:g1[container⇒  c2], diceroll ) 3000,next action ⇒  ac1, delay_action ⇒  0, 
sequence ⇒  {inform:ev4[cover ⇒  c2, diceroll ⇒  3000],wait:ev5[delay⇒  6], if_then_else:if1 }]. 
 
if_then_else:if1[if ⇒  check winner⇒ag1,p1,3000), 

    then ⇒  {modify_topology:ev6[cover⇒  c2], end_plan:ev8}, else ⇒  { end_plan:ev9} ] 
 
check_winner(A,P, Diceroll*) ←  now(Time), 

not (holds_at(P,competitor, Comp,Time), 
holds_at(Comp, diceroll, Diceroll*,Time), Diceroll* >Diceroll). 

  
specifies a plan p1, with a goal g1 to cover for a container c2. In this plan the actions 
performed are: an inform event ev4, then a wait ev5 action with a 6 seconds delay, to 
attend for messages incoming from other agents. These actions are pushed by the 
ACTING-Cycle/1 in the ACTION-QUEUE/2 of the agent body, that produces them in 
the container, which then mediates the actions according to the rules previously defined. 
As opposed to the PERCEPTION-Cycle/1, the ACTING-Cycle/1 also produces events 
in the agent environment, conditionally to the state of the agent's knowledge base. 
The inform event is sent to the neighbourhood of the dead container. Inside this event 
there is a random value diceroll that is used by the agents to compete for the coverage of 
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a container (in this case c2 ). After waiting for the delay, the planner finds an if1  object 
as the next action to perform. This is a C-logic object representing an if-then-else  
structure, handled by the CONDITIONAL?/1  predicate in the planner, that checks for 
the if  condition check_winner/3  in the if-then-else structure. The planner then executes 
either the then sequence of actions or the else sequence of actions according to the result 
of the check_winner/3 condition. If agent ag1 is the competition winner, it covers for the 
dead container and ends the plan, otherwise the plan is destroyed. Furthermore the 
NEXT-EXECUTABLE-PLAN/2  predicate distinguishes between plans that have been 
frozen due to the introduction of a delay, and plans whose execution can continue, 
allowing for plans with different goals to be executed in parallel. 
Fig. 9 shows, from left to right, a complete example on how the covering of dead 
containers happens in self-healing agent environment. The panel on the left in Fig. 9 
shows a set of GOLEM containers represented by a different color. The central panel in 
Fig. 9 shows that four of containers have undergone a service disruption. 
The panel on the right in Fig. 9 shows that the area of the containers that have undergone 
a service disruption have been covered by their neighbours. It is important to state that to 
perform the covering of the neighbours, the coordination takes place only amongst 
neighbour containers and not globally. 
Despite the communication taking place between the agents, two or more containers may 
end up covering the same area. When the inconsistency is perceived, the interested agents 
start a resolution protocol similar to the one just discussed. The advantage in using a high 
level description in terms of plans rather than using reactive agents is that it allows us to 
have a more compact definition of the agent behaviour by making the plans structures 
that can be instantiated and destroyed according to the interaction state. Achieving the 
same result with reactive rules would require a more verbose and low level agent mind 
specification, that is difficult to debug when dealing with hundreds of agents in 
distributed settings. 

 
Figure 9: Simulation of Interaction of a 6X6 Pervasive Agent Environment with Service 
Disruptions. 

 
4 Evaluation 
 
In this Section we evaluate the behaviour of our self-healing agents. In particular we want 
to evaluate the time to recovery of our network and the messages exchanged by the 
various containers. Furthermore, we also need to evaluate how one or multiple containers 
would respond to the load of dealing with multiple patients at the same time. We 
evaluated our system by deploying a 10x10 grid of self-healing GOLEM containers. A 
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10x10 grid of GOLEM containers is usually enough to cover a large area of a city, where 
the load expected is around 4000-5000 patients. 
To perform our evaluation, we used a dual core Intel Centrino 2, 2.66 Ghz per core with a 
total of 3Gb of RAM. We are aware that a PHS should be distributed on a grid and that 
deploying it on a single host gives a partial view of the real performances of the system. 
In real settings we foresee that some of the containers will require more resources when 
representing hot spots (i.e. super markets or hospitals), while unpopulated areas will 
require less resources. For this purpose, as explained in Section 2, we enhanced GOLEM 
with load balancing techniques. Fig. 10 shows how the load is distributed amongst 
multiple GOLEM containers, distributed in different hosts within the same network, with 
a variable number of patients, going from 1 to 50, who experience a problem with their 
glucose levels, rising an alert of hypoglycemia to be reported to their doctors. 

 
Figure 10: Load Balancing with Distributed GOLEM containers. 

As shown in Fig. 10 the time required to answer to a situation of alert depends on the 
number of patients monitored by a GOLEM container. In particular, the introduction of a 
load balancing mechanism allows our container to avoid situations in which a container is 
so overloaded that it cannot answer a patient. 
The tests showing the time to recovery and the number of messages exchanged by the 
containers for the recovery is shown in Fig. 11. When producing the curves in Fig. 11 we 
made the following assumptions: a) since the system is deployed in a single host, the 
delays of a real network are not taken into consideration b) we assumed that the 
containers die all at the same time, that is a pessimistic assumption as discussed in 
Section 3.2; c) the system presents failures after every 
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containers had the time to learn about its neighbours. The curves in Fig. 11

 
Figure 11: Performance Evaluation of a 10x10 Grid Pervasive Agent Environment. 

evaluate respectively the number of messages to recover from a failure and the total 
downtime with respect to the number of dead containers. These are two critical 
parameters: if too many messages are exchanged this can impact the PHS performances, 
and if there are long downtimes, emergencies may happen when the system is 
unavailable. 
Fig. 11 on the top shows the number of dead containers with respect to the number of 
messages that the agents need to exchange to cover for the missing containers. The curve 
behaves logarithmically because the more nodes in a neighbourhood die, the less nodes 
take part to the competition for covering a dead node, producing less messages. 
Consequently, the curve on the bottom of Fig. 11 behaves like a quadratic curve as the 
alive infrastructure agents have to execute more plans to cover a bigger area. The 
introduction of parallel plans helps agents to minimise the downtime as whenever a dead 
neighbour is detected, a new plan is instantiated to cover it. Finally, it is important to 
state that the network is going to recover completely only in the case in which the 
neighbourhood is not completly disrupted. Usually, if more than 60% of the network is 
down, only a partial recovery is possible as the containers may not know enough dead 
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neighbours to cover for all of them. 
Also, introducing agent communication, mediated by the agent environment in terms of 
the propagation rules previously presented, allows to minimise a) the number of 
messages exchanged in the environment b) the uncontrolled growth of the area controlled 
by a container and c) the conflicts arising in the healing protocol. 
 
5 Related Work 
  
The personal health systems and the pervasive health care field are relatively new, 
consequently there are not too many attempts to deal with self-healing problems. 
Nevertheless, there have been already attempts to deal with the problem of self-healing a 
PHS when a disruption occurs, by using standard approaches to fault tolerance, as 
opposed to our approach based on planning and agent environments. 
In [Liao et al., 2008] Cheng-Feng et al. presented a self-healing and self-organising 
protocol for smart houses. Cheng-Feng et al. propose a message-based pervasive 
middleware where the nodes represent devices within the smart house and are atomic 
components of the system. The nodes in the system then can constitute pervasive 
communities. The failure detection in this system is done by means of heartbeat messages 
submitted by the devices to a Pervasive Service Manager that checks periodically if they 
are alive. 
Our approach differs from the one presented by Cheng-Feng et al. as we introduce the 
concept of agent environment to deal with the failure of the system rather than having a 
centralised entity and that we assume that agents in the distributed environment can 
reason about its topology and coordinate to heal it. 
Schaeffer-Filho et al. [Schaeffer-Filho et al., 2009] define the concept of Self Managed 
Cell  (SMC) as a recursive structure that goes from the body-area network for health 
monitoring of the patient to the SMC to handle the household of the patient to the SMC 
of the healthcare professionals in charge of the patient. The Body Area Network (BAN) 
is modelled as a virtual complex node that abstracts a set of sensors and publish events in 
the form of health records in the upper level SMCs. The upper level SMCs are controlled 
by doctors in charge of the patients that can use the SMC to check for the physiological 
signals of the patient. 
From a certain perspective we can relate the concept of SMC to the concept of agent 
environment, although the SMCs are not thought to work in indoor environments. SMCs 
also define policies to handle the events happening in the environment and produce 
further events with a declarative approach that is similar to ours. The main difference 
between our work and SMCs is that we have cognitive agents reasoning about the 
properties of the agent environment, which allows us to have the different cells to 
coordinate when a disruption happens, while in the case of SMCs, the issue is left to the 
single SMC policies. 
From the stand point of self-healing systems, in [George et al., 2002] Selvin et al. in 
propose to utilise a bio-inspired approach to rebuild geometric shapes and then they apply 
this approach for a distributed wireless file service. Selvin et al. demonstrate that using 
nature inspired models like cell division and morphogenesis and wound healing allows to 
have a very resiliant service that is capable to self-heal despite the fact that 99% of the 
network is dead. 
Our approach is similar to the one proposed by Selvin et al. except that we have a further 
constraint on the number of messages exchanged and on the time to recover from the 
failures. In this sense, with respect to the work in [George et al., 2002], the fact that we 
have planning agents that interact producing simple plans in parallel helps to minimise 
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the downtime, while the communication process, aided by the rules of the environment, 
helps to minimise an uncontrolled expansion of the cells in their neighbourhood. 
The work of Kondacs in [Kondacs, 2003] is another example on how using bioinspired 
models allows to create robust systems. In particular Kondacs proposes a self-healing 
systems where the general principles are formalized as a programming language with 
explicit primitives, basing the self-organisation on processes such as morphogenesis and 
developmental biology. Kondacs demonstrates that, despite having cells in the system 
dieing at a high rate, the system is capable to self-regenerate the missing part. Similarly 
to Kondcas, we utilize a declarative approach to define the rules for with the healing 
process takes place, but differently from what proposed by Kondacs, we have a further 
constraint related to the mapping of the system to a real environment which does not 
allow us to have an uncontrolled growth of the cells to cover for the dead cells. 
In [Haesevoets et al., 2009] Haesevoets et al. present the MACODO system for self-
healing and self-adaptive agent organisations. In particular the MACODO system is 
based on splitting the responsibilities of the agents in terms of roles and define a set of 
laws in the agent environment to handle the consistency of the roles. Similarly to the 
work in [Haesevoets et al., 2009], we separate the concerns of handling self-adaptation 
between the agent environment and the agents, but differently from [Haesevoets et al., 
2009], we use cognitive agents to deal with the changes of the environment, which allows 
us to deal with its failure and inconsistencies in parallel. 
 
6 Conclusion and Future Works 
 In this paper we presented a pervasive healthcare system where agents reorganize the 
agent environment to self-heal from a fault of one or more of the containers composing it. 
We utilise planning agents that can reason in parallel about multiple faults and that 
produce plans and interact to cover for missing containers in the environment. The 
novelty of the approach resides in using planning agents combined with a complex 
declarative agent environment that simplifies the interaction between the agents 
controlling the distributed system. We have evaluated the system from the point of view 
of the downtime and number of message exchanges required to recover from a growing 
number of dead containers, discovering that the system scales up and it can recover in 
useful time even when more than 50% of the system is down. Future works include 
deploying the system in real setting and testing it with real users as well as extending the 
algorithm to define the topology of the environment dynamically at deployment time. 
Another issue that we will take into consideration in future work is how to deal with 
patients roaming in a distributed network that is self-healing from a disruption. 
 
Acknowledgements 
This work has been partially funded by the Hasler Stiftung grant MONDAINE, by 
the Nano-Tera proeject G-DEMANDE and it was partially supported by the FP7 
287841 COMMODITY12 project. 
 

References 

 
Stefano Bromuri and Kostas Stathis. Distributed Agent Environments in the Ambient 
Event Calculus. In DEBS '09: Proceedings of the third international conference on 
Distributed event-based systems, New York, NY, USA, 2009. ACM. 
 



   

 

   

   
 

   

   

 

   

    Author    
 

    
 
 

   

   
 

   

   

 

   

       
 

Stefano Bromuri, Michael Ignaz Schumacher, and Kostas Stathis. Towards distributed 
agent environments for pervasive healthcare. In Jurgen Dix and Cees Witteveen, 
editors, MATES, volume 6251 of Lecture Notes in Computer Science, pages 125-137. 
Springer, 2010a. ISBN 978-3-642-16177-3. 
 
Stefano Bromuri, Visara Urovi, and Kostas Stathis. iCampus: A Connected Campus 
in the Ambient Event Calculus. International Journal of Ambient Computing and 
Intelligence, 2(1):59-65, 2010b. 
 
Stefano Bromuri, Michael Schumacher, and Kostas Stathis. Pervasive healthcare 
using self-healing agent environments. In 9th International Conference on 
Practical Applications of Agents and Multi-Agent Systems (PAAMS'11), Advances 
in Intelligent and Soft-Computing. Springer Verlag, 2011a. 
 
Stefano Bromuri, Michael Schumacher, Kostas Stathis, and Juan Ruiz. Monitoring 
gestational diabetes mellitus with cognitive agents and agent environments. In 
Proceedings of the 2011th IEEE/WIC/ACM International Conference on Intelligent 
Agent Technology (IAT 2011), August 2011b. 
 
W. Chen and D. S. Warren. C-logic of Complex Objects. In PODS '89: Proceedings of 
the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database 
systems, pages 369-378, New York, NY, USA, 1989. ACM Press. ISBN 0-89791-308- 
6. 
 
Richard Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application of 
Theorem Proving to Problem Solving. In IJCAI, pages 608-620, 1971. 
 
Felix C. Gartner. Fundamentals of fault-tolerant distributed computing in 
asynchronous environments. ACM Comput. Surv., 31:1-26, March 1999. 
ISSN 0360-0300. doi: http://doi.acm.org/10.1145/311531.311532. URL 
http://doi.acm.org/10.1145/311531.311532. 
 
Selvin George, David Evans, and Lance Davidson. A biologically inspired programming 
model for self-healing systems. In WOSS '02: Proceedings of the first workshop on 
Self-healing systems, pages 102-104, New York, NY, USA, 2002. ACM. ISBN 1- 
58113-609-9. doi: http://doi.acm.org/10.1145/582128.582149. 
 
Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-healing 
systems - survey and synthesis. Decision Support Systems, 42(4):2164-2185, 2007. 
ISSN 0167-9236. doi: DOI: 10.1016/j.dss.2006.06.011. Decision Support Systems in 
Emerging Economies. 
 
Robrecht Haesevoets, Danny Weyns, Tom Holvoet, and Wouter Joosen. A formal 
model for self-adaptive and self-healing organizations. Software Engineering for 
Adaptive and Self-Managing Systems, International Workshop on, 0:116-125, 2009. 
doi: http://doi.ieeecomputersociety.org/10.1109/SEAMS.2009.5069080. 
 
Attila Kondacs. Biologically-inspired self-assembly of two-dimensional shapes using 
global-to-local compilation. In IJCAI'03: Proceedings of the 18th international joint 
conference on Artificial intelligence, pages 633-638, San Francisco, CA, USA, 2003. 
Morgan Kaufmann Publishers Inc. 
 
R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Comput., 4(1): 
67-95, 1986. ISSN 0288-3635. doi: http://dx.doi.org/10.1007/BF03037383. 
 



   

 

   

   
 

   

   

 

   

    Title    
 

    
 
 

   

   
 

   

   

 

   

       
 

Johannes Krampf, Stefano Bromuri, Michael Schumacher, and Juan Ruiz. An agent 
based pervasive healthcare system: a first scalability study. In Proceedings of the 
4th ICST International Conference on eHealth (eHealth 2011), ICST Lecture Notes 
(LNICST). Springer Verlag, November 2011. 
 
Chun-Feng Liao, Ya-Wen Jong, and Li-Chen Fu. Psmp: A fast self-healing and self-organizing 
pervasive service management protocol for smart home environments. In 
APSCC, pages 574-579, 2008. 
 
Marija Mikic-Rakic, Nikunj Mehta, and Nenad Medvidovic. Architectural style 
requirements for self-healing systems. In Proceedings of the first workshop on Self- 
healing systems, WOSS '02, pages 49-54, 2002. ISBN 1-58113-609-9. 
 
Alberto Schaeffer-Filho, Emil Lupu, and Morris Sloman. Realising management and 
composition of self-managed cells in pervasive healthcare. pages 1-8, Apr 2009. doi: 
10.4108/ICST.PERVASIVEHEALTH2009.5979. 
 
Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, 
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup 
protocol for internet applications. IEEE/ACM Trans. Netw., 11:17-32, February 
2003. ISSN 1063-6692. doi: http://dx.doi.org/10.1109/TNET.2002.808407. URL 
http://dx.doi.org/10.1109/TNET.2002.808407. 
 
Visara Urovi, Stefano Bromuri, Kostas Stathis, and Alexander Artikis. Towards runtime 
support for norm-governed multi-agent systems. In KR, 2010. 
 
Upkar Varshney. Pervasive Healthcare Computing: EMR/EHR, Wireless and Health 
Monitoring. Springer Publishing Company, Incorporated, 2009. ISBN 1441902147, 
9781441902146. 
 
Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class 
abstraction in multiagent systems. Autonomous Agents and Multi-Agent Systems, 
14(1):5-30, 2007. 
 
M. Wooldridge. MultiAgent Systems. John Wiley and Sons, 2002. ISBN ISBN 0 
47149691X. 


