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ABSTRACT

Comparing several series of images is not always easy as the corresponding slices often need
to be selected manually. In times where series contain an ever–increasing number of slices this
can mean manual work when moving several series to the corresponding slice. Particularly two
situations were identified in this context: (1) patients with a large number of image series over
time (such as patients with cancers that are monitored) frequently need to compare the series,
for example to compare tumor growth over time. Manually adapting two series is possible but
with four or more series this can mean loosing time. Having automatically the closest slice
by comparing visual similarity also in older series with differing slice thickness and inter slice
distance can save time and synchronize the viewing instantly. (2) analyzing visually similar
image series of several patients can profit from being viewed in a synchronized way to compare
the cases, so when sliding through the slices in one volume, the corresponding slices in the other
volumes are shown. This application could be employed after content–based 3D image retrieval
has found similar series, for example. Synchronized viewing can help finding or confirming the
most relevant cases quickly.

To allow for synchronized viewing of several image volumes, the test image series are first
registered applying affine transformation for the global registration of images followed by diffeo-
morphic image registration. Then corresponding slices in the two volumes are estimated based
on a visual similarity. Once the registration is finished, the user can subsequently move inside
the slices of one volume (reference volume) and can view the corresponding slices in the other
volumes. These corresponding slices are obtained after a correspondence match in the registra-
tion procedure. These volumes are synchronized in that the slice closest to the original reference
volume is shown even when the slice thicknesses or inter slice distances differ, and this is auto-
matically done by comparing the visual image content of the slices. The tool has the potential to
help in a variety of situations and it is currently being made available as a plugin for the popular
Osirix image viewer.
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1. INTRODUCTION

Medical imaging has evolved strongly over the past 20 years. The number of images has increased
as has the variety of imaging protocols and differing image producing devices, contrast agents
and image processing tools.1 Most of the growth has been in tomographic images that acquire
an ever–increasing number of slices. Viewing such slices is basically impossible with scanners
producing hundreds or thousands of images per patient. Tools such as the Osirix platform have
been created for convenient image viewing.2

Evaluation of large image series by the clinicians is a difficult task as much information needs
to be integrated. Comparative analysis of a given series with past series of the same patient or
with similar cases of different patients can be time consuming if done manually as the image
slices have to be synchronized. Irrespective of scanning techniques (modality), orientations or
slice thickness, it would be good to find locations in similar image series belonging to same area
that are automatically located to ease the follow up of infections, tumor growth or any other
abnormality. Such a tool can be a good complement to 3D retrieval of similar cases,3, 4 which is
basically an extension of content–based image retrieval, having received much research attention
over the past 20 years.5–7

The work described in this article applies a robust image registration technique for this ob-
jective in a first step. Image registration is a process to change the appearance of the images
relative to a reference image by finding a transformation that can rotate, translate and stretch
images, thus enabling direct comparisons, combination or analysis.8 The registration can find a
transformation between two images. Based on the nature of the transformations, the registration
can be categorized as rigid, affine or elastic. The transform obtained from rigid registration is
characterized by rotation and/or translation parameters. Affine registration includes shear pa-
rameters in addition to rotation and translation. In this article, both rigid and affine registration
methods are used to globally register the images. The techniques consist of an approximate
transform for correcting the global differences in position, orientation and shear between the
reference volume and the test volumes. In a second step, the registration is refined using elastic
registration (also called deformable registration) that is able to express both global and local
deformations.

This paper describes the implemented registration pipeline and shows the results of the reg-
istration of lung computed tomography (CT) and brain magnetic resonance imaging (MRI) in
particular. The implemented methodology is intended to focus on possibilities and results regard-
ing the image registration that is useful for efficient correspondence matching problems. Most
of the brain images could be registered easily using a rigid or affine transformation. However,
it is not as easy to get a good correspondence with the lung images using such transformations.
A non–linear registration technique is required for these soft tissue deformations and was im-
plemented mainly for lung CT image alignment. The idea was to get a non–linear transform,
which could be used to model the local deformation after applying a global linear transform.
The implemented non–rigid deformable transformation works well with major anatomical struc-
tures. Similarity metrics are the key for evaluating the correspondences and these have to be
identified.9, 10 Mutual information was used as a similarity metric.11 In order to accelerate the
computation the images are first downsampled. A rigid transformation was applied to this down-
sampled image series and the registration of the image series was initiated. The transformation
obtained is then used to initialize the affine transformation with more degrees of freedom. These
steps consist of the global positioning of the images. The bulk transform obtained from the global
registration is used to initialize a B–spline deformable transformation with a higher degree of
freedom. B–spline deformable transformations are split into coarse and fine registration proce-
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Figure 1: Block diagram with the components of the registration.

dures making use of a multi–resolution image registration concept. The optimizer maximizes the
mutual information between the two image series.

We also developed a plugin of our system for Osirix∗ using the ITK† (Insight Toolkit) reg-
istration libraries for an efficient image registration of major parts of body. This availability
within Osirix should make the tool available for a larger number of physicians. The objective is
to make the system fully automatic and robust for aligning image series of various body parts
with respect to a single image series. This should not require any manual segmentation or an-
notation of the structures. Automatic navigation in similar image series is the prime objective.
Finding the correct slice automatically in other registered series with respect to one reference
series is required for such a navigation.

2. METHODS

Image registration is the process of determining the spatial transformation that maps similar
points from one image to another image. Registration is basically treated as an optimization
problem with the goal of finding the best transformation that aligns a new image also named
a template image, source image or test image with respect to a fixed image also referred to as
reference image or target image. In this article, the term test image is employed, and fixed image
for the reference image series. The basic framework with components of image registration is
shown in Figure 1. The fixed image f(x) and the test image m(x) are the input images with
x representing the n–dimensional coordinates. The transformation component T (x) gives the
spatial mapping points from one image to the other while the interpolator I(x) evaluates the
test image intensities at non–grid positions. The interpolator function is the first fundamental
part of the registration that defines the images in continuous spatial coordinates. The associated
transformation function T :Ωf → Ωm, where, Ωf ⊂ R3 and Ωm ⊂ R3 with Ωf and Ωm represents
fixed and moving regions respectively. An anatomical structure present in the fixed image in
a point x ∈ Ωf is mapped to the corresponding point in the test image at y ∈ Ωm using the
transformation function T (x) = y. From the obtained transformation function, deformation
vectors of every voxel in the fixed image can be calculated as d(x) = y − x. A metric is used
to evaluate the (dis)similarity between the test and the fixed image. An optimizer is required
in image registration to search for the optimum transformation that maximizes the similarity
between the images. Thus, the optimization method needs to minimize a given cost function (i.e.,
finding the best possible transformation that defines point–to–point correspondence between the
two images). Mutual information was used as a metric to quantify the matching between the two
images. It is also used by the optimizer for finding the best transformation. Mutual information
measures the information that two volumes share. Registration is executed by maximizing that
information and involves finding a transformation from the coordinate frame of one to the other

∗http://www.osirix-viewer.com/
†http://www.itk.org/
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Figure 2: Pipeline of the implemented registration

image volume such that it maximizes the mutual information I between the two. It can be stated
as a maximization problem.

argmax
T

(I(f(x),m(T (x))). (1)

Mutual information is defined in terms of entropy as:

I(f(x),m(T (x))) = h(f(x)) + h(m(T (x)))− h(f(x),m(T (x))), (2)

where h is the entropy of a random variable and is defined as h(x) = − � p(x) ln(p(x))dx, p is
the probability and h(x, y) the joint entropy of two random variables x and y as:

h(x, y) = −
�

p(x, y) ln (p(x, y)) dxdy. (3)

First term on the right of Eq. (2) is the entropy in the fixed volume, second term is the entropy
of the part of the moving volume into which the reference volume projects. The third term, the
(negative) joint entropy of f and m, contributes when both are functionally related. The last
two terms identify transformations that explain the information in both volumes.

The implemented registration pipeline consists of four major steps (see Figure 2) and uses
the mutual information as similarity metric. The first two steps globally align the image volumes
using rigid and affine registration methods. Then, a coarse deformable registration is done and in
the final step dense deformable registration is implemented for refining the results. Two separate
deformable registration steps are applied to deal with large image series. The first three steps
are performed at lower resolution and then in the final step the transformation is used as the
start for registration at higher resolution.

2.1. Rigid Registration

A rigid registration TR(x) finds the optimal parameters (i.e., three rotations and three trans-
lations) that globally maximize the mutual information between the two images using multi–
resolution stochastic gradient descent optimization. This exploits the over constrained problem
of rigid registration as the number of voxels is much larger than the transformation parameters.12

A small random sample of the image domain is used at each iteration. For each iteration, the
number of voxel samples chosen was 104 and 50 grey–level histogram bins were used to find the
mutual information for the optimizer. A regular step gradient descent optimizer was used. At
each iteration this optimizer takes a step size of 0.01 in the negative direction of the gradient.
A local extremum is assumed when the gradient changes direction abruptly and the step length
is decreased by the optimizer. It is important to set the number of iterations for convergence
because the optimizer may fluctuate between the maxima and minima of the function. We have
set it to 50 iterations.
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2.2. Affine Registration

Affine registration TA(x) is used to get the transformation that is optimized with respect to
translation, rotation, scaling and shearing. It is initialized by using the transformation obtained
from the rigid registration step. In this case, another 20 iterations are executed taking 5 × 104

voxel samples with 50 histogram bins.

2.3. Deformable Registration

The global registration (rigid and affine registration) accounts only for differences due to position,
orientation and size of the anatomy but it cannot deal with small anatomical changes between
subjects. To overcome this problem it is necessary to employ a non–rigid transformation.13

A series of N B–spline transformations14 are applied to the pre–aligned images. The final
transformation is therefore a composition of transformations obtained from the global registration
step and N levels of B–spline transformations.

T final(x) = TN
B-spline(x) ◦ . . . ◦ T 1

B-spline(x) ◦ TA(x) ◦ TR(x), (4)

where x is a point in the fixed image domain Ωf and ”◦”denotes the transformation composition.
The 1D basis function of a B–spline is a piecewise polynomial with a uniform spacing between
the control points. This is extended to higher dimensions by a tensor product. A B–spline
deformation field in 3D is defined as:14

TB-spline(x, y, z) =
3�

l=0

3�
m=0

3�
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n, (5)

where, (x, y, z) are the spatial 3D image coordinates, c is a uniform grid nx × ny × nz of control
points used to parameterize the transformation with i = �x/nx� − 1, j = �y/ny� − 1, k =
�z/nz� − 1, u = x/nx − �x/nx�, v = y/ny − �y/ny�, w = z/nz − �z/nz�, and Bq are the qth

B–spline basis functions as:

B0(u) = (1− u)3/6, (6)

B1(u) = (3u3 − 6u2 + 4)/6, (7)

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6, (8)

B3(u) = u3/6. (9)

The optimal transformation is obtained by minimizing the cost function associated with both the
global and local transformation parameters. This cost function contains: 1) the cost associated
with the voxel–based similarity measure (i.e., mutual information) and 2) a regularization term,
which constraints the transformation to be smooth.14 The cost function C that the registration
algorithm minimizes is defined as

C = −Ī + λ||∇U ||, (10)

where Ī is the normalized mutual information, ||∇U || denotes the L2–norm of the gradients of
a smooth deformation field U , and λ is a weighing factor that controls the relative strength of
the term. The optimal deformation field U is computed iteratively as:

Un = Un−1(Id + T n
B-spline) + T n

B-spline, (11)

where Id denotes the identity matrix and T n
B-spline is a local update at the nth iteration, which

is computed at each iteration to maximize the mutual information between the fixed and the
deformed test image volume.
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The computational cost while dealing with such non–linearities can be decreased by using a
multi–resolution approach as in.15 This multi–resolution technique used for applying a non–rigid
B–spline registration has three levels of B–spline transformations (N = 3) with decreasing grid
size used. First, coarse deformable registration was executed by taking grid cells of 5 × 5 × 5
adopted in a multi–resolution approach. Finally, this deformed transformation was used for fine
deformable registration. The grid size was taken to be as large as 20 × 20 × 20 and applied to
the full resolution image. To make the registration process faster, only 7 iterations were done in
this final step.

2.4. Data set used

An existing data set with 15 image series pairs was taken from several sources to evaluate the
proposed system. The data set includes 10 pairs of chest computed tomography (CT) series.
The remaining 5 series were from Magnetic Resonance Imaging (MRI) of the brain. Among
the 10 pairs of lung CT images, 7 pairs are from the database of the EMPIRE10 registration
challenge‡. The series in this data set have identical interslice distance between the fixed and
test image series. The remaining 3 pairs were taken from a database of cases used with Osirix§

with different inter–slice distance and slice thickness. These images were not categorized into
fixed and test image pairs in contrast to the data set from the previous database. In order to
evaluate the system accuracy for other modalities and anatomic regions, MRI brain images were
used as well. The MRI data set was also taken from cases made available with Osirix. Thus, 15
pairs of image series were used for the evaluation of the system accuracy.

EMPIRE10 has images taken from a single subject but taken with a variety of sources includ-
ing varying institutes with varying scanners and protocols. We chose 5 pairs of lung CT images
having 0.7mm isotropic resolution and one each with 0.6mm and 1.5mm. Scans included in the
data set are taken at various phases of the breathing cycle.16

Lung images from the Osirix database were chosen such that the interslice distance and slice
thickness in the series to be registered was large. Image series with a slice thickness 3mm,
3mm, 1mm and 3mm with interslice distances 3mm, 1.5mm, 0.5mm and 0.5mm respectively
were chosen. These image series were registered keeping one image series as fixed and the other
(chosen randomly) as the test series to evaluate registration for image series with varying slice
thickness and interslice distances.

A brain dataset with the name BRAINIX was used. Among the 7 series in this dataset, 5
image series with limited noise were used for the evaluation. The dataset included both T1, T2∗

and T2 weighted MR images. Four image series had a slice thickness of 5mm and the remaining
one had 1mm.

3. RESULTS

First, a gold standard was created by manually setting the reference points in the image series.
The reference points chosen were the apex of the lung, tracheal splitting and uppermost slice
showing the diaphragm in the lung CT. For brain MRI images, reference points are the top of the
head, top of the cerebellum and the bottom of the cerebellum. These series were then registered
keeping one of the image series as fixed and the other as the test series. The automatic alignment
of the image volumes with the fixed volume was achieved after registration (see Figure 3). The
difference between the slice corresponding to the manually set reference point and the slice
obtained after automatic alignment of the registered image series is the error. The error in the

‡http://empire10.isi.uu.nl/download.php last visited 1.11.2011
§http://pubimage.hcuge.ch:8080/
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Figure 3: Automatic alignment of two registered lung CT pairs.

Figure 4: Three image series (B, C, and D) registered with image series A. Tracheal splitting in the
fixed image A with similar automatic synchronization in other image series after registration shown in
views B, C and D. In C there is an error of 2.1mm (3 slices) while the others have no error. CTs of
different patients were taken into account. The interslice distance of each series is 0.7mm with a slice
thickness of 1mm

registered volumes in the registered image series is taken only along the z–direction (axial). This
means that if two image series A and B have an inter slice distance of 0.7mm and B is to be
registered with respect to A, then after the registration the reference point in the ground truth
corresponds to slice 12 in A but the same reference is on slice 10 of B, and the error measured is
2 ∗ 0.7 = 1.4mm. Similar calculations were performed for all the reference points and the mean
was calculated for each pair of image series as shown in Table 1.

Our main objective is to align several image series of the same or different patients with a
single fixed image series (reference series) as shown in Figure 4. Here, series A is taken as fixed
series and the remaining three B, C and D are considered as test image series. An example of
registered brain MRIs is shown in Figure 5 after implementing registration with only 2 iterations
in the fine deformable registration. Decreasing the number of iterations in the fine deformable
registration improves computational complexity.

The time taken for the registration of these three test series to get aligned with the fixed
series is optimized by setting different parameters (e.g., the number of iteration steps in fine
registration) in order to find a trade–off between execution time and convergence error. The
time required to achieve convergence (in other words synchronize) is 2 minutes 35 seconds on a
Mac OS X portable computer with a 2.3GHz Intel Core i5 processor and 4GB of RAM.

4. INTERPRETATION

Registration is clearly required to obtain automatic alignment of two or more image volumes,
which can help in synchronized viewing of several similar image series together. We implemented
the treatment pipeline using ITK libraries and also developed an Osirix plugin to make the tools
potentially available for a larger group of users.
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Table 1: Error in mm for the evaluation of accuracy in automatic alignment. The mean error for lung
image series and brain image series are 3.95mm and 0mm, respectively.

Scan pair Interslice distance (mm) Slice thickness (mm) Error (mm) Mean error (mm)

A. Lung Pair

1

0.7 1

Apex: 2.1

1.16
0.7 1

Trachea split: 0.7

Diaphragm: 0.7

2

0.7 1

Apex: 1.4

0.933
0.7 1

Trachea split: 0.7

Diaphragm: 0.7

3

0.7 1

Apex: 0

0.233
0.7 1

Trachea split: 0

Diaphragm: 0.7

4

0.6 1

Apex: 0

1.03
0.6 1

Trachea split: 2.4

Diaphragm: 0.7

5

0.7 1

Apex: 0

0
0.7 1

Trachea split: 0

Diaphragm: 0

6

1.5 1

Apex: 0

0
1.5 1

Trachea split: 0

Diaphragm: 0

7

0.7 1

Apex: 1.4

0.933
0.7 1

Trachea split: 0.7

Diaphragm: 0.7

8

3 3

Apex: –

3
0.5 1

Trachea split: 6

Diaphragm: 0

9

0.5 1

Apex: –

5.5
3 3

Trachea split: 11

Diaphragm: 0

10

3 3

Apex: –

3.75
1.5 3

Trachea split: 0.7

Diaphragm: 0

B. Brain Pair

1

5.98 5

Top of head: 0

0
5.98 5

Top of cerebellum: 0

Bottom of cerebellum: 0

2

-5 5

Top of head: 0

0
5.98 5

Top of cerebellum: 0

Bottom of cerebellum: 0

3

-5 5

Top of head: 0

0
-5.98 5

Top of cerebellum: 0

Bottom of cerebellum: 0

4

1 1

Top of head: 0

0
5.98 5

Top of cerebellum: 0

Bottom of cerebellum: 0

5

-5 5

Top of head: 0

0
1 1

Top of cerebellum: 0

Bottom of cerebellum: 0
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Figure 5: Automatic alignment of brain images (top of brain).
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Figure 6: Error comparison for distances in similar slice in the two volumes (before and after registra-
tion).

Figure 6 shows the misalignment in two image volumes before and after registration. Two
image volumes with the same and a differing interslice distance were used in this case. The
image series were chosen such that their first slices were initially aligned to the same point.
We then manually navigated into the image series along the z–direction for all the reference
points (i.e., apical region, top of the diaphragm and splitting of the trachea). The mean of
the misalignments before the registration was used as a baseline. Similarly, we calculated the
misalignment as a distance for the registered pair. It is clear that the slices are highly misaligned
before registration. The series are effectively aligned with only negligible distance between image
pairs after registration in most of the cases. However, the misalignment was comparatively large
for the volumes with a large difference in the inter slice distances.

Table 1 also contains the detailed errors for all the analyses. From Figure 7 it is clear that
the apical region and diaphragm of lungs were registered with a very small error (∼0.7mm and
0.35mm respectively) while the tracheal splitting has a higher error (∼3mm). The top of the
lungs (i.e., apical region) and the diaphragm (nearly at the bottom of the series) form clear
reference points so the mutual information between them is high. This is not the case with the
tracheal splitting, which had less distinct points so the mutual information is lower. The major
error for the tracheal splitting lies in lung pairs 8, 9 and 10, which is mainly due to the large
difference in the interslice distance between the fixed and test volumes.
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5. PLUGIN IN FOR OSIRIX

An Osirix plugin was developed that can be seen in Figure 8. The user can easily tune the
parameters such as grid size for deformable registration and the number of iterations required
for both global and local registration algorithms. The number of iterations allows choosing a
tradeoff between registration accuracy and computing time. The user can also choose to use
only rigid registration, since we found that for most of brain images a simple rigid registration
scheme allowed high registration accuracy. However, when local variations have to be captured,
deformable registration schemes are suggested. The slice numbers are synchronized among all
series.

6. CONCLUSIONS

The results in this paper show that fully automatic alignment of several volumes of images is
possible with relatively high precision. Precision is lower in the case where compared volumes
have large differences in inter slice distance and in slice thickness, which could be expected.
Depending on the anatomic region and the partial overlap, the required registration algorithms
can slightly vary. We compared the case of CT images of the lung and MRI brain images as
examples. Computational complexity is another aspect to take into account and having several
steps of registration starting from a lower resolution image can reduce this complexity. Brain
images are relatively rigid and thus registration was easier than for the lungs where much soft
tissue is involved and where anatomic differences between persons can be stronger. In the case
where images of the same patient are compared this should not play a major role as anatomic
variability is in this case low and even varying slice thicknesses or inter slice distances can be
dealt with.

Our goal was to have a toolbox that can be adapted to various types of images and showing
that these tools work for CT and MRI of two regions is only a first step. The mean error analyzed
for the lungs was 3.95 mm and for the brain all slices could be perfectly registered albeit for only
a small number of series.
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Figure 8: A screenshot of the Osirix plugin. Registration results obtained using four test series (left)
registered with a reference volume (right) with the parameters shown in the menus at the left.

In the case of similar image series found with content–based visual retrieval, it seems impor-
tant to include parameters that may reduce variability, such as adding the age and gender to the
visual retrieval for similarity calculations and potentially also height and weight that might have
a strong influence on the images. The current algorithm is only a starting point and evaluations
on more anatomic regions seem necessary. A clinical evaluation is the final goal, also to show
the advantages and inconveniences in using and automatic solution for alignment. For such an
evaluation the Osirix plugin still needs to be improved. Plugins that require opening several
image series are not easy to integrate into OsiriX. On the other hand such an integration is
necessary to obtain any real impact of the final solution.
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