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ABSTRACT

Volumetric medical images contain an enormous amount of visual information that can discourage the exhaustive
use of local descriptors for image analysis, comparison and retrieval. Distinctive features and patterns that need
to be analyzed for finding diseases are most often local or regional, often in only very small parts of the image.
Separating the large amount of image data that might contain little important information is an important task
as it could reduce the current information overload of physicians and make clinical work more efficient. In this
paper a novel method for detecting key–regions is introduced as a way of extending the concept of keypoints
often used in 2D image analysis. In this way also computation is reduced as important visual features are only
extracted from the detected key regions.

The region detection method is integrated into a platform–independent, web–based graphical interface for
medical image visualization and retrieval in three dimensions. This web–based interface makes it easy to deploy
on existing infrastructures in both small and large–scale clinical environments.

By including the region detection method into the interface, manual annotation is reduced and time is saved,
making it possible to integrate the presented interface and methods into clinical routine and workflows, analyzing
image data at a large scale.

Keywords: Content–based medical image retrieval, region–based image retrieval, 3D medical imaging, web–
based interfaces, visualization.

1. INTRODUCTION

The use of medical images to assist clinicians in decision making has grown massively over the past decades and
medical images are produced in vast quantities everyday.1,2 A study estimates medical imaging to occupy 30%
of world storage,3 so management of the visual data is a task of real importance. Once image data have been
used for diagnosis, reuse of images is very limited although massive amounts of knowledge are stored in the data.
This limited reuse is partly due to privacy constraints4 but also partly due to the difficulties in obtaining relevant
images to queries in an effective and efficient manner. Content–Based Image Retrieval (CBIR) techniques are
able to increase the re–usability potential of these images and medical cases in general, either for clinical decision
support (CDS)5–7 or for educational purposes.8 Medical image retrieval has been an intensive area of research
for the past 20 years.1,2, 9 Despite the efforts made in the field,10,11 the clinical use of image retrieval remains
underused or even unknown to many professionals.2 To increase the reuse of the valuable knowledge stored
in images daily produced in hospitals, content–based retrieval technologies need to be pushed into the clinical
routine by creating new user interfaces and clinical workflows adapted to radiology routine.12 Tools need to be
able to make current work more effective and efficient and they need to deal with very large amounts of data to
reduce physician overload.

Medical images contain an enormous amount of visual information, which makes it difficult and expensive
to analyze them manually. In addition, abnormalities and clinically–relevant visual patterns often occur in a
small region of interest of medical images,13 which increases the need for local descriptions in contrast to global
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descriptors. Current tomographic imaging modalities actually produce an increasing number of images so that
manual work becomes more tedious than before. This also increases the risk that physician miss and important
but small and localized pattern.

When local description is needed in image analysis, two approaches are commonly used: dense sampling and
keypoint–based analysis. Dense sampling uses a fixed grid of points across the image where the local descriptors
are computed. The decision of the sampling density is not trivial: if the grid is too dense there will be redundant
descriptors and the computational cost is higher than with a sparse sampling; on the other hand, too sparse
sampling has the risk to miss important information. Keypoint analysis tries to identify the optimal sampling
points for computing the local descriptors. Keypoints have been widely used with various feature–detection
techniques: borders, corners or salient points often based on gradients. The Scale–Invariant Feature Transform
(SIFT)14,15 is a well–known method for automatically finding the number and location of keypoints. It is one of
the most popular detectors used for 2D images (coupled with a descriptor) but there is no preferred method for
local analysis in volumetric images (3D). However, SIFT is bound to the notion of point of interest and therefore
the ability to determine an area or volume of interest is limited. The superpixel16,17 approach has been extended
to supervoxels18 and provides a region–based descriptor of the image. However, superpixels and supervoxels
are defined as exhaustive partitions of the complete images and therefore do not reduce the amount of voxels
to be analyzed. In order to achieve this, a second step that evaluates the meaningfulness of each superpixel
or supervoxel would be required. Figure 1 shows examples of the detections made by the SIFT 1(a) and the
superpixels 1(b) approaches

Besides the problem of reducing the number of voxels to be analyzed, there are other challenges that need
to be addressed. Local description is a fuzzy term that raises the obvious question of how local is local enough?
Existing key point methods such as SIFT already provide an idea of the area of influence of the keypoint, using
size and orientation features as shown in Figure 1(a). In this article we propose that instead of obtaining a single
keypoint, the detection works on a regional basis, providing a region of interest based on the actual patterns of
the image with no predefined shape.

In this paper we present a novel region of interest detector for medical images that is able to first reduce
the amount of data that needs to be analyzed and second provide locally relevant regions that allow for region–
based CBIR . These characteristics make the technique suitable for general purpose CBIR19 but also for many
specific applications. The region detector is integrated into a web–based retrieval and visualization interface
that maximizes the possibility to be adopted in clinical practice by using a platform–independent visualization
toolkit that is easy to deploy on any existing infrastructure.

The rest of the paper is organized as follows: Section 2 explains the methods and materials used with specific
focus on the region of interest detector, Section 3 presents the web–based interface for medical image retrieval
as a result of the integration of the region detector and Section 4 discusses the conclusions and future work.

2. MATERIALS AND METHODS

Medical images contain a large amount of visual information. However, most important is often to capture with
great detail the visual appearance of small regions of interest or areas with anomalies. This creates a need for
local description of the images, allowing computer–based approaches to understand the images not as a whole
but as one or several independent regions.

In this work, a key–region detector with the following features is developed:

• Multi–scale detection of saliency of regions in a SIFT–like fashion. Region detection is based on a wavelet
pyramid, providing meaningful regions at various scales. Non–salient regions can therefore be discarded
from analysis, reducing the amount of voxels to be analyzed and improving the description time.

• Geodesic mathematical morphology based on wavelet coefficients is used to determine the region extent.

• Mathematical definition of the region detector is dimensionality–independent. The algorithm can detect
regions not only in 3D but in any type of signal from 1 to N dimensions.

The region–detection procedure is described in details in the following subsections.



(a) Keypoint detection used by SIFT.15 Keypoints are dis-
played as vectors indicating location, scale and orientation.

(b) Superpixel partition of an image.16

Figure 1. Methods for keypoint detection and local analysis.

2.1. Multi–scale difference of Gaussians

Medical images are often defined in a set of heterogeneous physical magnitudes: inter–slice distance, spacing
and voxel width change among different acquisition protocols. In order to have a stable ground for retrieval and
image comparison, every image is first resampled to obtain 1 millimeter per side cubic voxels.

The volumetric image is filtered at various scales in a wavelet–based framework, using the difference of
Gaussians as mother wavelet. This is shown in Equations 1 to 3.

Definition 1. Let I(x) be a n–dimensional image indexed by the coordinates x = (x1, x2, . . . , xn) and j a
non–negative integer value. The difference of Gaussians wavelet at scale s = 2j, Isψ(x) is defined as:

σ1 = s; σ2 = 1.6σ1 (1)
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Then, the wavelet coefficients of an image I(x) at scale s are obtained as:

Isψ(x) = I(x) ∗ ψs(x). (3)



Figure 2 shows an example of the result of a CT scan filtered at various wavelet scales.

(a) Original image, resampled to
1mm–sided voxels.

(b) Wavelet coefficients image, at
scale s=1.

(c) Wavelet coefficients image, at
scale s=2.

(d) Wavelet coefficients image, at
scale s=4.

(e) Wavelet coefficients image, at
scale s=8.

(f) Wavelet coefficients image, at
scale s=16.

Figure 2. Slice of a CT scan of the lungs and the results filtered at increasing wavelet scales.

The wavelet transform can be seen as a bank of band–pass filters. At each wavelet scale s, a range of
frequencies is selected by the filter. Strong responses are produced when the image contains patterns in this
specific frequency range. Small details, borders, blobs and ridges are contained in high frequencies (lower scales)
and large objects have higher responses in lower frequencies as seen in Figure 2. Therefore, the aim of the
multi–scale difference of Gaussians wavelet filtering is to be able to highlight salient objects of various sizes.



2.2. Geodesic detection of regional local extrema

The wavelet coefficient image highlights strong changes at a given scale with either positive or negative values.
Values close to zero mean that the image does not contain large changes. Figure 3 shows how the local extrema
of the wavelet images are related to salient objects for a given scale in comparison to the values of the original
image, where saliency is not directly related to the gray level values but to its gradient.

Therefore, a way of computing the extrema is needed. Rather than identifying the position of the local maxima
and minima, a geodesic algorithm is used to obtain the region of influence of the extrema. This provided a set
of key–regions that correspond to the objects in terms of shape and size. The geodesic algorithm is performed
as follows to each wavelet coefficient image at scale s:

1. In order to identify the regional minima and their extent, the difference of Gaussians image is considered a
grayscale geodesic map. The holes (regions with gray values smaller than their neighbors) are filled using
the fill hole algorithm.20 As a result the new geodesic map at scale s, IsFILLED(x), contains flat areas
where the image contained a valley or hole.

2. By substracting the filled version of the image to the difference of Gaussian image, a grayscale map of the
regional minima IMIN can be obtained, i.e. a grey level image containing only the valleys and holes of the
image.

Ismin(x) = IsFILLED(x)− Isψ(x)

3. The regional minima map is binarized, setting the voxel value to 1 only for those voxels in the holes of the
difference of Gaussians.

Bsmin(x) =

{
0 ifIsmin(x) = 0
1 otherwise

4. This process is repeated with the dual version of the algorithm, called grind peak,20 and thus obtaining a
binary map of the regional maxima Bsmax(x).

5. A logic OR is performed on both maxima and minima binary maps, finally obtaining a map of the regional
extrema in the difference of Gaussians of the image Rs(x).

Rs(x) = Bsmin(x) ∨Bsmax(x)

6. Each fully connected component is labelled a key–region for scale s: Rs1, R
s
2, . . . , R

s
k.

Figure 4 shows an example of the regions detected at the end of the process.

2.3. Region–based descriptor for similarity–based retrieval

Region–based analysis enables the use of content–based retrieval that can help clinicians finding similar regions
in other cases. The descriptor to be used strongly depends on the application, since similarity can be defined in
terms of shape, size, texture or grey level (color) intensity.

In this work, a wavelet–based descriptor is used to characterize texture patterns contained in the images.
Once the regions of interest are detected, the energies of the wavelet coefficients are used as a descriptor for
similarity–based retrieval. For each region detected, the energies of the wavelet coefficients within the region are
computed as a descriptor of the local texture.

Definition 2. Let R1, R2, . . . , Rk be k regions of interest. Then, an image I(x) can be described by the set of
k feature vectors F Ii , i = 1 . . . k calculated as:

Ei(I, s) =
∑
x∈Ri

Isψ(x)2. (4)

F Ii = (Ei(I, 1)), Ei(I, 2), Ei(I, 4), Ei(I, 8)). (5)
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(a) Original image (left). Gray level values (right).
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(b) Wavelet image at scale s = 2 (left). Coefficient values (right).
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(c) Wavelet image at scale s = 8 (left). Coefficient values (right).

Figure 3. Examples of wavelet images and the representation of the values. Regional maxima and minima directly
correspond to salient regions in the wavelet images 3(b) and 3(c) in contrast to 3(c), where saliency corresponds to large
differences in gray levels.



(a) Original image, resampled to
1mm–sided voxels.

(b) Regions of interest detected at
scale s=1.

(c) Regions of interest detected at
scale s=2.

(d) Regions of interest detected at
scale s=4.

(e) Regions of interest detected at
scale s=8.

(f) Regions of interest detected at
scale s=16.

Figure 4. Examples of salient regions detected in lung CT scans at various scales.

3. RESULTS

The region detector was successfully tested on medical data and meaningful anatomical regions can be detected.
Figure 5 shows a comparison of regions automatically detected and a manual segmentation of the lungs. The
region detector is also able to detect other regions such as the spine.

In order to provide a platform–independent retrieval interface that can be integrated seamlessly into clinical
routine without affecting an existing infrastructure, a web–based interface was developed.

The interface is based on the X Toolkit (XTK)∗,21 an open source, javascript–based visualization toolkit that
enables three dimensional model visualization, DICOM (Digital Imaging and COmmunications in Medicine) slice

∗http://github.com/xtk/X/



(a) Anterior view of manually seg-
mented lungs.

(b) Anterior view of detected regions.

(c) Superior view of manually seg-
mented lungs

(d) Superior view of detected regions

Figure 5. Examples of salient regions detected in a lung CT scan compared to the manual segmentation of the lungs.

viewing and volume rendering.

Figure 6 shows a screenshot of the developed interface. The retrieval workflow is described as follows:

1. The user (clinician) uploads an image file as a query for content–based retrieval.

2. An external label–map can also be uploaded with the desired regions of interest, for example if the user
has already generated manual annotations with third–party software.

3. Otherwise, the key–region detector produces a label map with the salient regions in the uploaded image.

4. Once the regions are generated or uploaded the clinician can select the relevant region for retrieval.

5. The retrieval engine produces a list of relevant regions in the database, grouped by patient.

The user can then load the visualization of the relevant items with the standard panning–zooming options. The
interface also provides access to the complete information of the case (diagnosis, patient history, radiology report,
etc.)

4. CONCLUSIONS AND FUTURE WORK

In this paper a novel key–region detector is presented that is able to reduce the amount of voxels to be analyzed
in medical images. It provides locally relevant regions at several scales for further analysis or image retrieval.
The algorithm automatically detects salient regions at various scales. This allows to extract features from all
these regions at the various scales, which provides great flexibility in a retrieval applications where users might
be interested in various sizes of elements.



Figure 6. Screenshot of the region–based volumetric retrieval interface

The developed tool is integrated into a web–based retrieval interface for general–purpose volumetric medical
image retrieval. The latter is developed using HTML and other platform–independent techniques enabling
classical panning/zooming, volume rendering and slicing features that are usually only available on desktop
interfaces. Region–based volumetric retrieval can improve the re–use of existing corpora of medical images in
clinical practice. It allows focusing on relevant local visual information in medical images without requiring any
additional user input. By integrating a novel region detector with a web–based interface and an image retrieval
engine, a new tool is made available to the clinicians.

Future work includes adaptation of the user interface to smaller mobile devices and integration of text–based
and multimodal queries for the retrieval of similar cases, as well as a clinical evaluation of the developed tools.
3D region detection and more importantly graphical user interfaces helping the query formulation and results
display are extremely important to be able to navigate in the large and quickly growing amount of medical visual
data.
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