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Abstract. This text gives a broad overview of the domain of visual
medical information retrieval and medical information analysis/search
in general. The goal is to describe the specifics of medical information
analysis and more specifically of medical visual information retrieval in
this book of the PROMISE winter school. The text is meant to deliver
an annotated bibliography of important papers and tendencies in the
domain that can then guide the reader to find more detailed information
on this quickly developing research domain. This text is by no system-
atic review in the field, so some citations might be subjective but should
lead the reader to further publications. The given references will pro-
vide a solid starting point for exploring the domain of medical visual
information retrieval.
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1 Introduction

Medical practice relies on data available on patients and usually tries to find ev-
idence for or against specific diagnosis leading to further examinations or treat-
ment [1, 2]. Decisions are thus often taken based on probabilities for or against
a specific diagnosis. The more medical knowledge becomes available the more
complex the relationships between the data and a potential outcome become.
Modern medicine is thus increasingly producing data that can be treated by
computers and the types of tests also change quickly over time. The amount of
data produced per patient in modern hospitals has increased strongly over the
past 30 years as has the amount of medical knowledge published in the scientific
literature [3]. Medical imaging is in large part responsible for the data growth
as modern tomographic devices produce ever thinner slices and also temporal
sequences leading to an explosion of visual data produced. It is estimated that
around 30% of world storage capacity is dedicated to medical imaging and that
mammography in the United States alone accounted for over 2 Petabytes in
2009 [4] Analyzing such large amounts of data now requires computerized tools
to remain efficient and particularly good processing infrastructures for compu-
tation [5]. Currently most use of the data is per patient but it has become clear
that reusing the data to find connections and help solving cases with data of
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other past cases can improve current care. Secondary use of medical data has
thus been discussed many times [6, 7].

This article has the aim to introduce medical information retrieval in general
as a domain but with a clear focus on retrieving visual information. Also for
the retrieval of visual information many techniques from text retrieval are used
and thus a general introduction is given and references to medical text retrieval.
Then, the more detailed analysis is on the search for visual medical data.

Medical information retrieval has always been an active domain of infor-
mation retrieval research [8] and many studies have been performed on the in-
formation searching behavior of physicians [9–11] showing that there are many
information needs in clinical practice but that time is often too short for de-
tailed search. Many physicians have regular information needs during clinical
work, teaching preparation and research activities [9, 12]. Studies showed that
the time for answering an information need with MedLine is around 30 min-
utes [11], while clinicians state to have approximately five minutes available [10].
Besides clear information needs there is also often a need to find similar cases,
for differential diagnosis and also for cases–based reasoning [13].

Existing medical retrieval engines include the health on the net web page1 for
professional and also public access to health information. Professional access to
the literature is given with the PubMed2 search system that offers many access
possibilities to the scientific biomedical literature including manual annotation
of the articles with MeSH terms oragnized by the American National Library of
Medicine. Medical search engines targeting radiologists but relying on text for
research are Goldminer3 [14] and Yottalook4

Section 2 describes basic tools used to analyze medical texts, Section 3 details
the main visual search techniques and approaches and finally Section 4 discusses
the text critically with its main findings and ideas for future directions.

2 Medical Information Analysis and Retrieval

As said in the introduction, textual medical information retrieval is a mature
domain with many techniques and applications available [8]. This domain deals
with the analysis of medical texts in general and very often with extracting infor-
mation from medical texts for further analysis. Natural language processing has
for many years resulted in extracting information from medical texts [3, 15, 16]
and sometimes mapping this information onto medical ontologies [17] to increase
the value of extracted information. In general, medical ontologies have been cre-
ated for many years to allow for higher quality coding of diagnoses, acts, and
events of clinical practice. MeSH (Medical Subject Headings) is a terminology
used to annotate PubMed scientific articles, UMLS (Unified Medical Language
System) is a Metathesaurus containing a large number of terminologies and in

1 http://www.hon.ch/
2 http://www.pubmed.gov/
3 http://goldminer.arrs.org/
4 http://www.yottalook.com/
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radiology RadLex is a standard terminoly for use in radiology reports [18]. All
these terminologies have links between the items and allow for exploiting se-
mantic analysis. The LinkedLifeData5 combines these terminologies and several
others in a semantic repository that can also be used for extracting information
from medical texts. Medical interoperability for data exchange can then rely on
the many existing standards [19] to make sure that all partners in a particular
health system actually understand the same standards and units when compar-
ing information that have been shared. The National Library of Medicine in the
United States is one of the largest actors in health data analysis and retrieval
and much research is performed here. This includes text search engines [20] as
well as approaches for the retrieval of images [21].

Many parts of medical information retrieval actually use the same principals
as general text retrieval [22, 23]. The main particularities are really linked to
a detailed analysis of terminologies and the sometimes big differences of medi-
cal language in several countries. This means that non–standard abbreviations
are frequently used and in some languages latin forms are used, sometimes in
combination or to replace normal language forms.

3 Medical Visual Information Retrieval

Several review articles give a much more complete view of the domain and the
current tendencies than this somewhat subjective annotated bibliography [24–
26]. Early articles mentioning content–based medical image retrieval are [27–29].

3.1 Techniques

The basis for most visual retrieval applications are components for describing
the images, or visual features, indexing and storage methods that allow for fast
data access also with large databases, distances measures to compare two images
or cases and then user interface components that allow presenting results to the
user and interacting to optimize the shown results based on feedback obtained
from users. Figure 1 shows this basic system layout with its components. Several
of these components can include machine learning approaches such as the visual
features or the distance measures that strongly depend on the type of data,
and there are also many pre–processing steps that can be used to normalize the
images for better comparison.

Most of the techniques used in medical image retrieval are broadly similar
to techniques employed in non–medical systems. Detailed description of non–
medical content–based image retrieval systems can be found in [30, 31]. One of
the differences is clearly that medical text processing is quite advanced and that
medical images can not really be analyzed without having their textual context.
General images can often be analyzed with respect to simple objects or what
is in the image whereas the context is also require to better integrate what the
image is about or even what a picture invokes in people [32].

5 http://www.linkedlifedata.com/
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Fig. 1. Overview of the principal components of content–based image retrieval systems.

3.2 Applications

Visual medical information retrieval has remained for a long time a purely aca-
demic domain with most systems not even tested in clinical routine. One notable
example for a small user test in a real clinical setting is [33] that used image
retrieval for radiologists in diagnosing interstitial lung diseases showing that par-
ticularly inexperienced users gain from getting additional images through visual
information retrieval. There are a few retrieval systems that are rather made
for browsing in broad databases but these systems offer generally only a low
general quality [29]. On the other hand many systems were developed for spe-
cific applications such as interstitial lung diseases [33, 34], spine images [35] or
the liver [36]. A detailed overview of applications and also interfaces of medical
image retrieval is given in [37]. A typical screenshot of a medical content–based
image retrieval system can be seen in 2, showing the retrieved images to a visual
query in a grid layout sorted by similarity.

Another screenshot can be seen in Figure 3 showing the Goldminer radiology
search system. Here the images are shown in connection with the articles in
which they appear highlighting the need for context and also the fact that most
often cases are search for in clinical settings and not really single images without
this context.

3.3 Evaluation of Visual and textual medical information retrieval

Within the Cross Language Evaluation Forum (CLEF6) an image retrieval task
started in 2003 and a medical image retrieval task was added for 2004 [38]. This
contest evaluates the quality of textual and visual information retrieval systems
for medical texts with a focus on images and on multilingual retrieval. Varying
data sets have been used over the ten years of its existence, starting with teaching
files [39], then radiology journal articles and finally articles of the medical open

6 http://www.clef-campaign.org/
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Fig. 2. A screenshot of a typical medical image retrieval system showing the image
results in a matrix ordered by similarity score and the diagnosis of the cases, including
a link towards the case and the image in full resolution.

Fig. 3. Screenshot of the Goldminer radiology search engine with a list of images found
for a textual search term in connection with the article in which they appear; visual
search is not possible in this system.
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access literature based on PubMed Central. In 2012 over 300’000 images were
made available for retrieval. Three tasks are offered:

– image modality classification, so classifying each journal figure into one of
38 images modalities ranging from radiology modalities to biological image
types and compound figures;

– image–based retrieval, meaning that the search target are single images; a
search need is expressed through text in several languages and a few example
images;

– case–based retrieval, meaning that the search target is a journal article that
can be considered relevant for differential diagnosis of a given case that
includes an anamnesis and images but no diagnosis.

More on the ImageCLEF campaigns and their outcomes can be found in [40,
41]. In general, several lessons have been learned over the past years:

– text retrieval is in general more stable and performs better than visual re-
trieval;

– combinations of textual and visual retrieval are delicate and the exact fusion
often determines the quality of the final results with multimodal runs often
obtaining the best results;

– approaches based on various types of visual words most often outperform all
other approaches for visual retrieval;

– modality information and other classification–based outcomes can be used
well to improve the retrieval results.

3.4 Challenges and Next Steps

Although content–based image retrieval is now well over 20 years old and also
medical visual information retrieval over 15 years, still many challenges remain
or have been uncovered in the past years as system get closer to clinical routine
and physicians request new ways to navigate in the increasingly large data sets.
One real challenge are clearly extremely large data sets or big data as very few of
the current approaches scale well [42]. Approaches such as Hadoop/MapReduce
exist but then still need to be adapted to the Terabytes produced in hospitals.
What makes things worse in medical imaging is the fact that the regions of in-

terest potentially relevant for a specific disease are often extremely small. Search
by region of interest is one of the most frequently requested functionality of radi-
ologists [43]. Ways to find out more about potential regions of interest in images
can be eye tracking as seen in Figure 4. The images show clearly that the regions
actually observed in detail are small and for most imaging types and suspected
diseases we can probably create probability maps on whether it can potentially
be a region of interest or not. This could potentially also reduce the amount of
data to be treated and also transmitted to ease the burden of big data.

Another area that has been touched in ImageCLEF but will require much
further research is case–based retrieval that also includes images in addition to
free text and structured data. Case descriptions or journal articles often include
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Fig. 4. A screenshot of a test with eye tracking equipment, show that regions of interest
or volumes of interest are often rather small.

incomplete data and images taken for similar cases might vary between hospitals.
The interactions and dependencies between images and clinical data are equally
important and much has still to be learned. First publications on case–based
retrieval exist in [44–46]. Something that could well help in this respect is a
good annotation or coding of images that would allow the use of semantics. In
radiology the RadLex standard [18] is an important step into this direction, and
this plus the automatic extraction of semantic features can help much for the
future. This would also allow to check data consistency and also contradictions
using the large body of knowledge of the LinkedLifeData7.

Currently the by far strongest increase in medical imaging are multidimen-

sional tomographic series, including a variety of modalities from CT (Computed
Tomography), to MRI (Magnetic Resonance Imaging) and PET (Photon Emis-
sion Tomography) and combinations of these such as PET/CT. The increasingly
thin slices create more detail and make viewing more difficult but offer many new
possibilities for real 3D information retrieval [45, 47, 48]. Such solid 3D texture
analysis can help to highlight regions of interest for physicians in volumes and
make viewing easier. In the case of 4D data even the simple viewing becomes
hard and so there is a read added value in making the data accessible in an
easier way [49] 4D data sets can be 3D series with a time component or in the
case of dual energy CT that creates 10 volumes of a body region imaged with
varying energy levels that can potentially be useful in clinical application but go
well beyond human vision.

Figure 5 shows an example of a 3D texture classification system that can be
used as diagnosis aid. The different tissue types of the lung are shown in colored
regions and can then be visualized in 3D allowing to explore the model or via a

7 http://www.linkedlifedata.com/
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Fig. 5. A web–based interface of a system for diagnosis aid on lung diseases; the texture
is classified into different classes and then shown in various 3D views.

standard color overlay in a grey scale slice view. This can help physicians viewing
images quicker. In general visualization is an extremely hot topic and important
in radiology to be able to analyze images quickly. The Osirix8 viewer is another
important example allowing various views on the data and many plugins or tools
for specific applications.

4 Discussion and Conclusions

This text gives a broad overview of medical information retrieval with a clear
focus on the retrieval of visual information. The idea is to present an annotated
bibliography and help getting a quick access to current developments in this
field. This text is not a systematic review and thus some of the citations may
be arbitrary but they do present current developments in the field and several
classical review articles as well. Medical information retrieval has been a busy
field for over 40 years and for medical visual information retrieval this has also
been the case for 15 years. The way in which medicine moves towards an increas-
ingly information rich field will make it necessary to develop new tools to make
stored knowledge accessible and usable by physicians. Before images and their
metadata will be fully integrated into information retrieval and clinical decision
support I still expect several research rich years.

8 http://www.osirix-viewer.com/
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