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Abstract

Purpose Case–based fracture image retrieval can assist surgeons in decisions re-
garding new cases by supplying visually similar past cases. This tool may guide
fracture fixation and management through comparison of long–term outcomes in
similar cases.

Methods A fracture image database collected over 10 years at the orthopaedic ser-
vice of the University Hospitals of Geneva was used. This database contains 2,690
fracture cases associated with 43 classes (based on the AO/OTA classification).
A case–based retrieval engine was developed and evaluated using retrieval preci-
sion as a performance metric. Only cases in the same class as the query case are
considered as relevant. The Scale Invariant Feature Transform (SIFT) is used for
image analysis. Performance evaluation was computed in terms of Mean Average
Precision (MAP) and early precision (P10, P30). Retrieval results produced with
the GNU Image Finding Tool (GIFT) were used as a baseline.

Two sampling strategies were evaluated. One used a dense 40x40 pixel Grid
sampling and the second one used the standard SIFT features. Based on dense pixel
Grid sampling, three unsupervised feature selection strategies were introduced
to further improve retrieval performance. With dense pixel Grid sampling, the
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image is divided into 1,600 (40x40) square blocks. The goal is to emphasize the
salient regions (blocks) and ignore irrelevant regions. Regions are considered as
important when a high variance of the visual features is found. The first strategy
is to calculate the variance of all descriptors on the global database. The second
strategy is to calculate the variance of all descriptors for each case. A third strategy
is to perform a thumbnail image clustering in a first step, and then to calculate
the variance for each cluster. Finally, a fusion between a SIFT–based system and
GIFT is performed.

Results A first comparison on the selection of sampling strategies using SIFT
features shows that dense sampling using a pixel Grid (MAP=0.18) outperformed
the SIFT detector–based sampling approach (MAP=0.10). In a second step, three
unsupervised feature selection strategies were evaluated. A grid parameter search
is applied to optimize parameters for feature selection and clustering. Results
show that using half of the regions (700 or 800) obtains the best performance
for all three strategies. Increasing the number of clusters in clustering can also
improve the retrieval performance. The SIFT descriptor variance in each case
gave the best indication of saliency for the regions (MAP=0.23), better than the
other two strategies (MAP=0.20 and 0.21). Combining GIFT (MAP=0.23) and the
best SIFT strategy (MAP=0.23) produced significantly better results (MAP=0.27)
than each system alone.

Conclusions A case-based fracture retrieval engine was developed and is available
for online demonstration. SIFT is used to extract local features and three feature
selection strategies were introduced and evaluated. A baseline using the GIFT sys-
tem was used to evaluate the salient point based approaches. Without supervised
learning, SIFT–based systems with optimized parameters slightly outperformed
the GIFT system. A fusion of the two approaches shows that the information con-
tained in the two approaches is complementary. Supervised learning on the feature
space is foreseen as the next step of this study.

Keywords content–based image retrieval · feature selection · fracture database ·

medical imaging · decision support system

1 Introduction

At the orthopaedic service of the University Hospitals of Geneva fracture cases have
been collected and stored for more than ten years in a teaching file called Casim-
age1 [37]. Images added are mostly radiographs before the initial intervention
or immediately after the operation. Whenever available, images are added when
the patient comes for a follow–up visit. Cases are classified using the AO/OTA
(Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association)
fracture classification [26]. Subsets of the data have been made available for ex-
ample in the form of teaching CDs and books [41].

The primary goal of building such a data set is to supply surgeons with exam-
ples of fracture cases with a surgical intervention. Fractures are among the most
common orthopedic problems. For cases where the bone displacement (fracture

1 http://pubimage.hcuge.ch/
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gap) or angulation is large, surgical interventions can be required. Many clinicians
choose the method they are most familiar with and perhaps not the one that could
lead to best results. It can be beneficial for surgeons to see how similar fractures
in past patients were operatively stabilized by other surgeons. Some cases also
contain images of follow–up visits, making it possible to evaluate techniques based
on long–term outcome.

So far, the search for fracture cases in Casimage is either performed using the
AO/OTA classification or sometimes by patient number. The pre–operative and
immediate post–operative radiographs or CT images from similar fractures contain
essential information to provide decision support to surgeons. Searching for similar
cases using images of a new case can be a complementary scenario for a better
use of the data stored. In this article, a content–based image retrieval system is
developed to enable such a search for fracture cases.

Content–based image retrieval (CBIR) usually extracts visual information of
images automatically and then allows searching for images similar to example(s).
Many articles have been published on CBIR for general images [39,10] as well as
medical images [33,21,30,29,32]. Several research groups have worked on fracture
image analysis as well, but rarely on fracture retrieval. Leow et al. [22,25,17] pro-
posed using contour–based segmentation and a gradient map inside a contour to
detect femur bone fractures in X–ray images, Donnelley et al. [13–15] developed
a long bone fracture detection system using similar techniques. Systems proposed
by Leow or Donnelley were both fracture detection systems that aimed at detect-
ing hard–to–find fractures such as occult bone fractures. They did not provide
retrieval functionalities for finding cases with similar fractures. The similar Frac-
ture Image Retrieval technique (IFIR) was proposed in [35] using gray level based
co–occurrence matrices to extract features. IFIR provides only single image–based
retrieval and no case–based retrieval functionality. These publications did not pro-
vide online demos, which makes testing the proposed solutions difficult. Several
online demo systems for medical CBIR exist such as MedGIFT2 (Medical GNU
Image Finding Tool [31]), IRMA3 (Image Retrieval in Medical Applications) [21],
FIRE4 (Flexible Image Retrieval Engine) [12,11], and SPIRS5 (Spine Pathology
and Image Retrieval System) [18]. To our knowledge, these medical CBIR online
demos are currently image–based rather than case–based. The image–based ap-
proach uses single images as query, which is usually not the unit of information
in clinical use. This approach is suffering from the fact that single images can
hardly provide enough description for a complete case [34]. Case–based retrieval
taking into account several images and potentially other data of the case has also
been proposed by other authors recently [36]. The case–based retrieval system de-
scribed in this paper focuses on images only. One fracture case contains various
possibilities of representation (for example a frontal view and a lateral view, or
inter–sectional CT scan). We look for suitable features and parameters to estab-
lish a flexible representation to enable comparison of cases. An online demo of this
system using a set of the fracture cases extracted in 2009 is available.

2 http://medgift.unige.ch/demo/
3 http://ganymed.imib.rwth-aachen.de/irma/onlinedemos.php
4 http://www-i6.informatik.rwth-aachen.de/∼deselaers/cgi bin/fire.cgi?port=12961
5 http://archive.nlm.nih.gov/proj/spirs.php
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The selection of image analysis techniques depends on the nature of the data
set. One of the most important challenges of fracture retrieval is that bone frac-
tures generate only very small local changes. Differences in anatomy between in-
dividuals are often more important than the difference due to a small fracture.
Approaches using local features are thus usually required. A large variety of lo-
cal visual features to represent the images were proposed during the last decade
such as GLOH (Gradient Location and Orientation Histogram) [28], SIFT (Scale
Invariant Feature Transform) [24], SURF (Speeded Up Robust Features) [4], and
many others [20,27,23]. In our system, image analysis is based on a combination
of SIFT and BoF (Bags of Features) [8], which proved to be robust in the Image-
CLEF medical image retrieval tasks [29,32]. ImageCLEF6 [5,6] has started within
CLEF7 (Cross Language Evaluation Forum [38]) in 2003 with the goal to bench-
mark image retrieval in multilingual document collections. Successful participants
in the ImageCLEF medical task [2,43] showed that grid sampling on a single scale
often obtains better results than standard SIFT multiscale sampling as medical
images are often taken under very standardized conditions and shift invariance has
only a limited influence. In order to improve the retrieval performance, sampling
strategies and feature selection strategies are investigated in this paper.

2 Methods

This section describes the main techniques and the data set used in this article.

2.1 Dataset used

In this article, a set of fracture cases extracted from the Casimage teaching file in
2009 was used. The data set consists of 23’970 images of 2’690 cases, classified into
43 fracture classes. Among them, 1’467 cases have post–operative images (imme-
diate + long term). The total number of post–operative images is 7’771. Malleolar
(ankle) fractures are classified according to the Danis–Weber classification [9,44].
For all other fractures, the AO/OTA classification [26] is used.

Images are grouped into cases with additional free text descriptions in several
fields per case. The textual descriptions can include information on the operation,
the outcome and also references to the literature, for example describing the tech-
niques used. Each case contains from 1 to 73 images of various modalities. The
number of images varies strongly as some cases can contain CT slices based on
the selections of the surgeon, and some cases can include many follow up visits.
The distribution of the cases based on the number of images is shown in Figure 1,
showing that many cases have few images, but almost all cases have at least 3
images.

Table 1 shows the number of cases per fracture class, as well as the total
and average number of images for each class. Fracture classes are available as
text labels corresponding to particular classes in the AO/OTA and Danis–Weber
classifications. The table shows that a few classes are quite dominant with over
10% of the cases such as femur and ankle fractures.

6 http://www.imageclef.org/
7 http://www.clef-campaign.org/
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Fig. 1 Number of cases with the respective number of images per case.

Around 90% of the images are x–rays. Other image modalities include CT
(Computed Tomography), MRI (Magnetic Resonance Imaging), 3D reconstruction
images, Angiography, Scintigraphy, hand–drawn surgery plans and photographs of
injuries. X–rays are taken from different views and have varying sizes, sometimes
highlighting a region of interest. For most cases, at least two x–rays are contained
in a case (one antero–posterior view and one lateral view). Sometimes a third view,
oblique or external rotation is given.

2.2 Retrieval techniques

The retrieval system proposed in this paper consists of online and offline processing
parts. In Figure 2, the workflow of the system is detailed. The input of the system
is a fracture case. The offline part involves mainly image analysis and indexing
steps. The online part includes distance measurement and fusion of the results.
Image analysis is only required in the online part when a new case is submitted.
Query cases can also be selected among the already analyzed cases and then no
image analysis is required. As feature selection by variance is considered as one of
the main novelties, it is detailed in Section 3.2. Other techniques that are reused
in this paper are briefly described in the following paragraphs.

Image analysis and indexing To detect salient regions in the images, two ap-
proaches are used:

– the standard SIFT detector;
– a 40x40 pixel grid sampling.

The SIFT detector uses standard parameters proposed by Lowe et al. [24] (us-
ing 3 octaves, a Gaussian kernel σ = 1.6 without up–sampling the image). Both
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Table 1 Number of cases and images of each fracture class.

fracture class nb of cases nb images aver. nb images/case
Acetabulum 31 433 13.97

Ankle 8 60 7.50
Ankle Weber A 44 270 6.14
Ankle Weber B 244 1784 7.31
Ankle Weber C 156 1222 7.83

Calcaneus 33 340 10.30
Carpal–Other 1 5 5.00

Clavicle 40 232 5.80
Elbow 4 21 5.25

Femur–Subtrochanteric 132 1342 10.17
Femur Diaphysis 169 1960 11.60

Femur Distal–Extraarticular 55 614 11.16
Femur Distal–Intraarticular 50 673 13.46

Femur Proximal–Head 2 18 9.00
Femur Proximal–Intertrochanteric 54 406 7.52

Femur Proximal–Neck 72 499 6.93
Femur Proximal–Pertrochanteric 419 2132 5.09

Foot 3 36 12.00
Hip 3 25 8.33

Humerus Diaphysis 119 1146 9.63
Humerus Distal–Extraarticular 30 325 10.83
Humerus Distal–Intraarticular 61 590 9.67

Humerus Proximal 172 1522 8.85
Knee 7 34 4.86

Metacarpal–Phalanx hand 10 30 3.00
Metatarsal–Phalanx foot 62 476 7.68

Patella 34 198 5.82
Pelvic Ring Fracture 43 438 10.19

Radius/Ulna Diaphysis 46 262 5.70
Radius/Ulna Distal 14 68 4.86

Radius/Ulna Proximal 58 357 6.16
Scapula 10 131 13.10
Shoulder 16 73 4.56

Spine Cervical 1 1 1.00
Spine Lumbar 2 8 4.00
Spine Thoracic 1 3 3.00

Talus 32 497 15.53
Tarsal–Other 17 244 14.35

Tibia/Fibula Diaphysis 205 2160 10.54
Tibia/Fibula Distal–Extraarticular 52 737 14.17
Tibia/Fibula Distal–Intraarticular 57 599 10.51

Tibia/Fibula Proximal–Extraarticular 23 310 13.48
Tibia/Fibula Proximal–Intraarticular 98 1689 17.23

total 2690 23970 8.91

described approaches use SIFT descriptors as visual features and the BoF (also
called BoW, Bag of visual keyWords 8) as image representation. In order to reduce
the feature space, visual features need to be categorized. This step is commonly

8 The definition of visual keywords varies in the literature. In certain articles [3] visual
keywords imply a supervised learning process to attach visual features to semantic labels.
Other articles [1,19] refer to visual keywords meaning that the feature set is obtained by
unsupervised learning. This includes feature clustering, where the supervised learning and well
defined semantic meaning are not necessary. In this paper, the second definition is chosen.
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Fig. 2 Workflow of fracture retrieval.

named feature clustering step. A griddified version of the hierarchical KMeans
quantizer [49] was developed for this step. The obtained cluster centers are also
named visual keywords, a visual dictionary or a visual codebook in the literature.

The optimal number of visual keywords kd has been studied by various research
groups [2,43] in the context of the ImageCLEF medical image classification task.
A choice of kd = 1000 is widely used and showed to be robust for many types of
medical images. This is taken as default setting in our online system. However in
this study other values of kd were tested and obtained better performance. After
mapping all features to the visual keywords a statistical analysis is performed.
Each image is described in terms of a histogram of visual words (BoF represen-
tation). The distance between two images is calculated with the HI (histogram
intersection) [42]. No supervised machine learning technique is used in this paper.

Fusion strategies Technically, case–based retrieval differs from image–based re-
trieval in both query formulation and result presentation. In this paper we con-
centrate on purely visual case–based retrieval. In contrast to image–based retrieval,
where visual similarity of single images is used for cases–based retrieval the visual
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similarities of all images in a case need to be taken into account to calculate vi-
sual distances between cases. Most often, also clinical data of the cases is used to
calculate case similarities. As for the fractures no structured data is available and
a goal of the text was really to concentrate on the visual aspects for similarity
calculation. The fusion of image similarities is performed in the following way to
obtain case similarities:

Let the query case Cq contains n images Iq(i), where 0 < i ≤ n and q represents
the query. The distances between Iq(i) and all other images in the database are
calculated with the HI. Thus, Iq(i) generates a set of similar images Is(i) ranked by
distance (s for similar). To obtain a set of similar cases Cs(i), each image of Is(i) is
replaced by the associated case. There can be several images in Is(i) representing
the same case in each list Cs(i). We use the combMAX fusion strategy proposed
by Fox et al. [16]. This strategy means that if several images represent the same
case in a results list, only the image with the highest score is kept. After the first
level fusion, n lists of similar cases Cs(i) (i = 1..n) need to be fused into one list,
depending on the number of images in the query case. A second level fusion is
applied based on the combMNZ [16] strategy. The reason for using combMAX at
the first level is to avoid bias due to the number of images per case that can vary
strongly. This could otherwise favor cases with many images.

The choice for the second level fusion is based on previous experience [16,7,
45] showing that using combMNZ obtained stable results for a variety of problems
and often has the best performance in benchmarks. The following equations detail
the fusion approaches:

DcombMAX = arg max
l=1:m

D(l), (1)

DcombMNZ = (

n∑

l=1

D(l)) ∗ F (l), (2)

where l is a returned image, D(l) the distance to l, F (l) the frequency of l, m the
number of images belonging to a returned case, and n the number of images in
the query.

Evaluation All cases are used as query to evaluate the system. Among the returned
cases, only those belonging to the same fracture class are considered as relevant,
although some very similar classes exist that could be regarded as relevant as
well. All other cases are considered non relevant. The query case itself is not
taken into account for the performance calculation as the distance to itself is not
calculated. Performance measures such as MAP (Mean Average Precision, defined
in Equation 6) and early precision (P10, P30, defined in Equation 4) are used.

P (ns, Cq) = nr/ns (3)

P (ns, Cq) is the precision after ns returned cases for query Cq. ns is the number
of returned cases taken into account and nr is the number of relevant cases among
the ns returned cases.

P (ns) =

n
c∑

q=1

P (ns, Cq)/nc (4)
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nc is the number of cases, which is constant at 2’690. Early precision at ns is then
averaged over the precision values of all queries.

AverageP (Cq) =

n
c∑

n
s
=1

(P (ns, Cq) ∗ rel(ns))/ntr (5)

AverageP (Cq) is the average precision for one query Cq. ntr is the total number of
relevant cases. rel(ns) is a binary function, returning 1 if the nsth case is relevant,
0 if not.

MAP =

n
c∑

i=1

(AverageP (Ci))/nc (6)

MAP is calculated for the entire database, meaning that the average precision for
each case AverageP (Ci) is averaged.

Measures described in Equation 4 and Equation 6 average the performance
over all cases, favoring good performance in large classes, particularly for early
precision. A class–based average is necessary to measure the stability across classes.
MAPcl, P10cl, P30cl are thus calculated for each class. The values averaged across
classes are noted MAPcl, P10cl, P30cl. There are thus six performance measures
(MAP, P10, P30, MAPcl, P10cl, P30cl) for the evaluation.

As small classes contain very few cases, the best possible precision scores are
well below 1 even for a perfect system. Among 43 classes, 12 consist of less than
10 cases, 16 of less than 30 cases. Thus, the best possible P10cl is 0.8095 and the
best possible P30cl is 0.7087).

The GNU Image Finding Tool (GIFT9) is an open source image retrieval
engine [40], which was also used as a baseline in ImageCLEF for the past eight
years [48,47,46]. Grey level and Gabor texture features are used to describe images
both locally and globally in the form of local blocks and a global histogram. In this
work, GIFT is used as a baseline. Each case is used as query with GIFT using all
images inside the case separately as query. To transform the list of similar images
into a list of similar cases, the combMAX fusion strategy introduced in Equation 1
is used.

3 Results

In this section, results are represented in three sub–sections. In the first sub–
section, a comparison is used to evaluate the SIFT+BoF approach with two sam-
pling strategies on the entire image collection. In the second sub–section, the data
set is divided into training set and test set. Three feature selection strategies are
used and a varying number of clusters are tested to optimize the performance. The
image collection is divided by 50%–50% per class into training set (1’337 cases)
and testing set (1’353 cases). 50%–50% per class means if one class contains 2 ∗ a
cases, a cases are randomly selected into training set and the rest of cases are
taken by testing set. As not all the classes have even number of cases, for classes
containing odd number (2∗a+1) of cases, only a cases are randomly selected into
training set, and the testset will have one more case(a + 1 cases) than training

9 http://www.gnu.org/software/gift/
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Table 2 Comparison of sampling strategies.

MAP P10 P30 MAPcl P10cl P30cl
SIFT detector 0.10 0.12 0.11 0.08 0.06 0.06
40x40 pixel grid sampling 0.18 0.25 0.21 0.10 0.14 0.10
GIFT baseline 0.23 0.38 0.31 0.15 0.20 0.15

set. The training data are only used to select suitable parameters for the num-
ber of clusters kd and regions N . No kernel–based feature space transformation
is performed in this stage (i.e no machine learning such as SVM or neural net-
work is used, only the choice of two parameters is learned based on the training
data). Cross–validation is performed 10 times to obtain average values for the 6
evaluation measures. In the third sub–section, fusion is applied to combine the
SIFT–based and GIFT–based approaches, which further improves the result.

3.1 Sampling strategies

Table 2 shows the performance obtained using the SIFT+BoF approaches with
various sampling strategies.

In our experiment, a 40x40 pixel grid sampling provides better results than
using the SIFT detectors. Both SIFT+BoF approaches are below the GIFT base-
line. GIFT uses a tf/idf feature weighting on a large number of low level features
(over 80’000 possible features), whereas our SIFT+BoF approach does not apply
any feature weighting or selection strategy.

3.2 Feature selection strategies

To improve the retrieval performance, three unsupervised feature selection strate-
gies based on variance are proposed. Based on a 40x40 pixel grid, the image is
divided into 1600 square blocks, noted blk(x, y) (0 < x <= 40, 0 < y <= 40).
One feature is extracted from each block. Blocks are considered salient when high
variance of the features is found in the region. The goal is to sort the blocks by
the variance of features. Then, a feature selection is performed to keep only the N
most salient blocks and not the others before the creation of the visual keywords.
The first strategy is to calculate the variance V ar(x, y)overall of all features inside
a block blk(x, y) for the entire database. The second strategy is to calculate the
variance V ar(x, y)case of features inside a block blk(x, y) for each case separately
Cj (0 < j <= 2690). The third strategy is to perform a thumbnail clustering with
a parameter kt in the first step, and then to calculate the variance V ar(x, y)thClst

inside a block blk(x, y) for each cluster Clstg (0 < g <= kt).
In Figure 3 the variance for all descriptors in each position is shown as an

example. Brightness represents the regions where high variance occurs. We can see
that border regions most often have a lower variance and are thus less important.

The 1600 regions are sorted by variance as presented in Figure 3. As the vari-
ance is calculated using features from the entire database it favors large image
classes. We highlight half (800) of the regions with globally high variance on two
example images (Figure 4) to show one important drawback of this strategy: the
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Fig. 3 Overall variance V ar(x, y)overall for each position in the images.

Fig. 4 Example of the 800 most salient regions in two fracture classes (left: ankle, right:
femur), Different colors represent the variance (pink: 1-100, red: 101-200, magenta: 201-300],
orange: 301-400, yellow: 401-500, green: 501-600, blue: 601-700, white: 701-800).

variation of images between different classes is not taken into account. For exam-
ple, in Figure 4 the ankle is perfectly covered by the 800 regions, whereas the femur
bone structure is in a large part outside of the 800 regions with the highest global
variance. Regions other than the selected 800 are not used for the extraction of
features, which can create an information loss for some classes.

To solve the problem of global variance, the variance of all images in a case
V ar(x, y)case and per cluster V ar(x, y)thClst (based on thumbnail images) are
calculated. Each case/cluster thus has specific salient regions selected. Figure 5
illustrates the frequency of each region in the 800 best positions when using the
variance on a per case basis.
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Fig. 5 Frequency of the 800 regions with highest variance per case.

Feature selection reduces the number of features to be passed to the K–means
clustering, which influences the selection of the clustering parameter kd. For the
first two strategies, we study both N and kd in the range of [100 : 1600] in steps
of 100, which forms a parameter grid. For the third strategy, a dimension kt in
needed. Only kt = 50, 70, 100 are investigated in our case to limit computation
time. Grid search is applied for 10 randomly generated training sets to optimize
the parameter settings. In total 16 ∗ 16 ∗ 10 = 2560 calculations are required for
the first two strategies. For the third strategy, 3∗2560 calculations are required to
evaluate the performance. Only the best parameters are afterwards validated on
the test set.

In Figure 6, Figure 7 and Figure 8 the performance for these calculations is
presented. For each curve, N is fixed and kd varies between 100 and 1600. For each
feature selection strategy, 16 curves can be printed (from N = 100 to N = 1600).
In order to avoid overloading the image, only the curves of the five best results
are shown. Curves are compared based on their best overall MAP.

In Figure 6, Figure 7 and Figure 8, results with small kd obtain often low
performance. This can be due to K–means clustering depending on the starting
points, which are randomly selected. When kd > 700, all curves become more
stable. Results show that in our case, the performance is always increasing when
features are clustered into a larger number of clusters. Best results are always
obtained by kd = 1600, which implies that higher kd may obtain even better
results.

For the V ar(x, y)overall strategy, the best results from the first to fifth are re-
spectively N = 700,N = 800,N = 600,N = 400 and N = 900. For V ar(x, y)case,
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best results from the first to fifth are respectively N = 800,N = 900,N =
700,N = 1000 and N = 500. For V ar(x, y)cluster, best results are obtained with
N = 800,N = 900,N = 700,N = 1000 and N = 600. The differences of per-
formance are often around 0.001–0.002, so rather small. Compared to the default
settings (kd = 1000), using kd = 1600 improves the MAP by 0.01–0.02.

Best runs for the three feature selection strategies are shown in Table 3. Param-
eters and scores are also presented. Case–based feature selection (V ar(x, y)case)
obtained the best performance and stability. It slightly outperforms the GIFT
baseline in terms of MAP and MAPcl both on the training and the test data set,
although GIFT is slightly better in early precision.

Compared with results listed in Table 2, feature selection improves the perfor-
mance significantly. Even without supervised machine learning, 800 regions of high
variance per image constantly obtain good results, better than using all regions.

3.3 Fusion of GIFT and SIFT

Combining the SIFT–based system and GIFT using combMNZ as defined in
Equation 2 improves the results. The SIFT–based approach is best with the
V ar(x, y)case feature selection and use the best parameters learned from train-
ing data. Results show that fusion improves the performance for both MAP and
early precision. This increase in the fused result shows that both approaches model
different information and are thus partly complementary.
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Table 3 Comparison of the three feature selection strategies.

Training set N k MAP P10 P30 MAPcl P10cl P30cl
V ar(x, y)overall 700 1600 0.2016 0.3270 0.2626 0.1731 0.1965 0.1380
V ar(x, y)case 800 1600 0.2283 0.3558 0.2872 0.1708 0.1978 0.1391
V ar(x, y)thClst 800 1400 0.2079 0.3310 0.2697 0.1680 0.1889 0.1300
GIFT baseline 0.2271 0.3691 0.2914 0.1641 0.2001 0.1413

Testing set N k MAP P10 P30 MAPcl P10cl P30cl
V ar(x, y)overall 700 1600 0.1997 0.3094 0.2410 0.1667 0.1842 0.1308
V ar(x, y)case 800 1600 0.2277 0.3479 0.2860 0.1978 0.1881 0.1303
V ar(x, y)thClst 800 1400 0.2064 0.3261 0.2644 0.1645 0.1645 0.1495
GIFT baseline 0.2266 0.3557 0.2889 0.1611 0.1966 0.1320

Table 4 Fusion of GIFT and the SIFT–based approach.

MAP P10 P30 MAPcl P10cl P30cl
GIFT+SIFT (combMNZ) 0.2680 0.4076 0.3192 0.2018 0.2543 0.1711

4 Conclusions

In this article two SIFT sampling strategies together with three variance–based
feature selection strategies are proposed for medical case retrieval on a database
containing fracture images. The goal was to improve the performance of the visual
case retrieval system. The GIFT retrieval system was used as the baseline for the
evaluation as it has shown to have good performance in absence of training data
in the past.

A dense sampling strategy such as a 40x40 pixel grid performed better than the
SIFT detector–based sampling, which is in agreement with the conclusion obtained
by [2,43]. This is due to the very standardized image acquisition protocols and thus
little need for shift, rotation and scale invariance, which are the strong points of
many visual word approaches. Salient point–based region detection such as SIFT
provides only a sparse sampling. The advantage of using SIFT is that it provides
a smaller number of high quality features, generating a relatively low–dimensional
feature space. Supervised machine learning requires the dimensionality of the in-
put feature space to be low, as it may extend this feature space. In cases where
supervised learning is not applied, the retrieval performance can be limited, as
part of the information is not taken into account. Dense sampling keeps a major-
ity of the global information without a learning process. It can thus outperform
the salient point–based approaches.

Feature selection can be considered as an unsupervised learning strategy. Us-
ing a variance–based feature selection improved the performance by up to 0.05.
Computing variance per case showed to be the best strategy. Overall results with
the visual word approach are not very different from the GIFT baseline but the
system uses a much smaller number of features and still has several possibilities
for optimization. GIFT proved to be very robust but is a rather closed system.
Learning strategies on the GIFT feature space have shown to have a very limited
potential in the past. Combining the layout–based features of GIFT with the local
features of our approach leads to much better results.
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Different from the conclusion stated in [2,43], in our tests the retrieval perfor-
mance continues to increase when the number of clusters kd increases. This can
be due to the fact that only a simple histogram intersection is used as distance
measure and no supervised learning strategy such as SVMs. In [2,43] SVMs are
always applied for feature–level machine learning. In the future we plan to take
into account machine learning on the feature space rather than on specific param-
eters to increase the performance. Performance should particularly increase for the
large classes which have sufficient training data. Stability also needs to be taken
into account in order to not reduce performance of small classes too much as the
number of cases per class in the described database is extremely heterogeneous.

The current version of the retrieval system is available online at10. The system
is an important step towards adding a visual retrieval functionality to the Casimage
database created by the surgeons or to other clinical case databases.
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10. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of

the new age. ACM Computing Surveys 40(2), 1–60 (2008)
11. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental compar-

ison. Information Retrieval 11, 77–107 (2008)
12. Deselaers, T., Weyand, T., Keysers, D., Macherey, W., Ney, H.: FIRE in ImageCLEF 2005:

Combining content–based image retrieval with textual information retrieval. In: Working
Notes of the CLEF Workshop. Vienna, Austria (2005)

13. Donnelley, M.: Computer aided long–bone segmentation and fracture detection. Ph.D.
thesis, Flinders University of South Australia, Adelaide, South Australia (2008)

10 http://arcgift.unige.ch/~xmzh/FractureDemo/RIA.html



Case–based Fracture Image Retrieval 17

14. Donnelley, M., Knowles, G.: Computer aided long bone fracture detection. In: Proceedings
of the Eighth International Symposium on Signal Processing and Its Applications (ISSPA
2005), vol. 1, pp. 175–178. Sydney, AUSTRALIA (2005)

15. Donnelley, M., Knowles, G., Hearn, T.: A cad system for long–bone segmentation and
fracture detection. In: Proceedings of the 3rd International Conference on Image and
Signal Processing (ICISP 2008), Lecture Notes in Computer Science, vol. 5099, pp. 153–
162. Springer (2008)

16. Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Text REtrieval Conference,
pp. 243–252 (1993)

17. He, J.C., Leow, W.K., Howe, T.S.: Hierarchical classifiers for detection of fractures in x–
ray images. In: Proceedings of the 12th International Conference on Computer Analysis
of Images and Patterns (CAIP 2007), Lecture Notes in Computer Science, vol. 4673, pp.
962–969. Springer, Vienna, Austria (2007)

18. Hsu, W., Antani, S., Long, L.R., Neve, L., Thoma, G.R.: Spirs: A web-based image re-
trieval system for large biomedical databases. International Journal of Medical Informatics
78(Supplement 1), S13–S24 (2009). MedInfo 2007

19. Jiang, Y.G., Ngo, C.W., Yang, J.: Towards optimal bag–of–features for object categoriza-
tion and semantic video retrieval. In: CIVR ’07: Proceedings of the 6th ACM international
conference on Image and video retrieval, pp. 494–501. ACM, New York, NY, USA (2007)

20. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descrip-
tors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2004), vol. 2, pp. 506–513. Washington, DC, USA (2004)
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