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ABSTRACT
Medical image retrieval is still mainly a research domain with a large variety of applications and techniques. With the
ImageCLEF 2004 benchmark, an evaluation framework has been created  that  includes a  database,  query topics and
ground  truth  data.  Eleven  systems  (with  a  total  of  more  than  50  runs)  compared  their  performance  in  various
configurations. The results show that there is not any one feature that performs well on all query tasks. Key to successful
retrieval is rather the selection of features and feature weights based on a specific set of input features, thus on the query
task. In this paper we propose a novel method based on query topic dependent image features (QTDIF) for content-based
medical  image retrieval.  These feature  sets  are  designed to  capture both inter-category and intra-category statistical
variations to  achieve good retrieval  performance in terms of  recall  and precision.  We have used Gaussian Mixture
Models (GMM) and blob representation to model medical images and construct the proposed novel QTDIF for CBIR.
Finally, trained multi-class support vector machines (SVM) are used for image similarity ranking. The proposed methods
have  been  tested  over  the  Casimage  database  with  around  9000  images,  for  the  given  26  image  topics,  used  for
imageCLEF 2004. The retrieval performance has been compared with the medGIFT system, which is based on the GNU
Image  Finding  Tool  (GIFT).  The  experimental  results  show  that  the  proposed  QTDIF-based  CBIR  can  provide
significantly better performance than systems based general features only.

1. INTRODUCTION
Content-based image retrieval or visual multimedia retrieval is one of the most active research areas closely related to the
fields of computer vision, image processing and information retrieval [1]. Reasons for the large number of developed
systems include the exploding amount of visual data being produced in digital form and thus high demand for more
efficient and effective access to these images.
Massive amounts of visual medical images are being produced in hospitals today and it is expected that the amounts of
medical images will further increase in the future. Several hospitals start having completely digital archives and at least
CT and MRI pictures are almost always stored in digital archives as film archives are extremely expensive to handle. A
typical university hospital currently produces several thousand images a day and the yearly production is in the range of
terabytes. Still the access to these visual data is still almost exclusively done by patient and study identification. This does
not use the available knowledge up to its full potential. Visual access methods can be a missing piece to create a medical
visual knowledge management. Still, most currently available techniques for varied datasets perform unreliably even for
relatively easy tasks. Only very specialized applications on limited datasets are available.  There are great needs for
improved content-based visual image search, navigation and browsing tools to make efficient and effective image access
possible so that we can make use of these data to their full potential, including the textual information that the images are
attached to. Content-based image retrieval is an advanced method to search, navigate and browse large medical image
databases that can help as a diagnostic aid [2], for research studies and to manage teaching file systems and similar image
collections [3].

Many visual descriptors exist to describe grey level distributions, textures and shapes in medical images [1]. Large
amounts of literature exist but only few comparisons of such feature sets for image retrieval tasks that state reproducible
performance measures. Partly, this is due to a lack of commonly accessible medical databases. In this study we will use
the Casimage database [16] to benchmark the performance of the proposed query dependent feature selection methods.
The Casimage database is freely available and is also being used for the image retrieval benchmark imageCLEF [4]. It
contains almost 9000 images, and 26 query topics were chosen for the imageCLEF competition (see Fig. 1). Ground truth
for these query topics exist so we can evaluate retrieval results with several subsets of the features and compare them. As
the dataset is freely available, the results are reproducible and can be compared with other techniques.



Figure 1. 26 image topics defined for the ImageCLEF medical image database.

In the past 10 years, extensive work has been done for general content-based image retrieval. Fig. 2 shows the general
CBIR framework, which consists of four main components: feature extraction, similarity measures, a database of pre-
analyzed image collections, and a relevance feedback loop [3]. Many features have been proposed for CBIR, including
global and local features based on color, texture and the shape of objects, or region-based features, etc. All these features
are general features and independent of query image categories or topics. This is due to the very nature of content-based
image retrieval where we do not know how many categories of images there are in the image collections. In this article
we will use the two terms interchangeably mainly depending the context. In the medical image retrieval, in particularly,
ImageCLEF, the term, topic, 26 image topics are defined to benchmark the performance of various CBIR systems. In the
general CBIR literatures the term categories are used instead.

Figure 2. General architecture for CBIR with relevance feedback where image features are query-independent.

Different from general image collections, medical images have its own unique special characterization. Among other
characteristics one unique feature of medical images is that in general there are a limited numbers of image categories or
topics which depend on several factors: body parts, view positions and image modalities. Based on this very fact, we
propose a novel image feature for content-based medical image retrieval: the proposed features are dependent on specific
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image query topics. Therefore, these feature sets capture both inter-category and intra-category statistical variations to
achieve good performance of recall and precision. Conceptually, we can consider that general CBIR works on open
image  collections  where  there  are  unlimited  image  categories.  Even  for  home  photos  there  are  so  many different
situations for photo taking, it is almost impossible to count how many categories we may end up with if we try to find out
how many categories we could have for home photo image collections. However for medical images used in hospitals the
above is not completely true because of a limited number of modalities of medical image acquisition devices, limited
body parts or organs. Based on these medical categories it is possible to develop query topic dependent features and
associate similarity measures to achieve better retrieval performance. 

In the next Section, the methodology of the proposed approach is elaborated. An implementation of such an approach
is  introduced in  the following Sections.  Specifically,  we will elaborate  the Gaussian Mixture Model,  local  regional
feature extraction and representation in Section 3. In Section 4, multiple-class SVM for image retrieval will be explained
briefly. Experimental results are presented in Section 5. At last a discussion and our conclusions are presented.

2. METHODOLOGY
The proposed general system architecture is shown in Fig. 3 for using query topic dependent image features (QTDIF) for
content-based medical image retrieval (CBMIR). What is different from the general architecture for CBIR shown in Fig.2
is that the extracted features depend upon the query topics.

Figure 3. A novel general architecture for using QTDIF for CBMIR.

It is important to point out that for a pre-defined topic set, for instance, the 26 topics used in the ImageCLEF, it is
relatively easy for people to determine which topic a given query image belongs to, at least for most of the topics (see
Fig. 1 showing the images). Therefore, a user can inform a CBIR system to use better features for retrieval based on
known topic information. We can consider the CBIR process actually performed in two steps: the first step is done by
humans to identify a given query’s topic class;  the second step is  done by computers to use QTDIF and similarity
measures for image retrieval from the image DB. Effectively, the above process makes best use of both human and
computer capabilities. This can be seen in Fig. 4.

For the proposed QTDIF-based medical image retrieval the key design considerations include how to design good
features for  given topics and also how to perform similarity measures,  either based on clustering method or trained
classifiers to determine the most similar images for a given query topic. In our current work we have chosen to use a blob
representation  to  represent  regional  features  of  medical  image samples,  and  then to  use multi-class  support  vector
machine (SVM) to perform similarity measuring of the given query image and the image collection stored in the DB.
Please note that we assume that we have a pre-defined image topic set, in our experiments on the ImageCLEF medical
image DB there are 26 topics defined as shown in Fig. 1. 

There are several ways to design and implement the proposed QTDIF based CBIR system. One way is to design
different features for several groups of topics based on the image characteristics such as presence of structural features, or
smoothness of main textures, or distribution of edges along main directions, etc. In the end, the given topics can be
divided into several groups and each group has one corresponding set  of features.  Another possible way is  that we
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experimentally decide one sub-set of the given topics and corresponding topic-dependent features, then the rest of the
topics will only use a general image feature set. In general, both methods require some experiments to design the feature
sets to make the proposed method effective and efficient.

Figure 4. QTDIF-based medical image retrieval is performed in two steps: a human determines a topic class for a given
query image, then computer makes use of the topic label and QTDIF feature to perform image retrieval

3. LOCAL REGIONAL FEATURES AND THEIR REPRESENTATIONS
As the medical collection contains many images and a large variety of image types, we need to employ color, texture and
shape  information  as  features  to  represent  images.  Besides  the  imaging  modality,  one  of  the  most  important
characteristics of medical images is the anatomic structure. Hence, in the current work local regional features instead of
global features are extracted and utilized. 

Blob  representation [5]  is  a  robust  approach to  representing local  coherent  regions in  color  and texture.  In  this
approach, pixels in each image are assumed to obey a GMM in a joint color-texture-spatial feature vector space. The
Expectation Maximization (EM) is used to estimate the model parameters. Homogeneous regions with similar feature
properties are then grouped together and segmented out. The contour of each dominant region is decomposed into a
series of harmonic ellipses through the ellipse Fourier transformation [6]. The geometrical parameters of these ellipses
are used for image matching and retrieval. The first order harmonics are often used to visualize the structure of the
regions inside the image centered at their ellipse centers with their mean colors rendered respectively. 

3.1. Texture Features

Give any image ),( yxI , its gradient  ),( yxI  at  ),( yx  is a column vector  T
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changes in color intensities. For color images, the L*a*b* color space is chosen and only the L* channel is treated. We
consider that the noise in the image ),( yxI , ),( yxI  will be smoothed by a Gaussian kernel ),( yxG  with variance

2 . In order to process the image adaptively, the Gaussian kernel will be different at each pixel, i.e., ),( yx  . The
optimal value of ),( yx at pixel ),( yx can be found by examining the convergence of the local polarity with respect to
monotonically increasing scales. The polarity is to measure the extension of points in a certain neighborhood whose
gradient vectors are in the same directions [5]. With respect to the local dominant orientation within the window, and for
a fixed scale and a given pixel position ),( yx , it can be defined by 
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where 
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Here, [.]  and [.]  are the rectified positive and negative parts of their argument and n  is the unit vector perpendicular

to the dominant orientation [5]. The sums in the above equations are made over the given window defined by ),( yxG .

p  is positive and ranges from 0 to 1. 

Now, we link ),( yx with the scale order k by / 2k s  , 0,1,...,7s  , and produce a series of polarity images

which are smoothed by a Gaussian with standard deviation k2 to yield ),( yxp
k . For each pixel  ),( yx , the scale

),(ˆ yx  is selected as the first value of ),( yxk  for which the difference between successive polarities is less than

2%. The local dominant orientation is the same as that of the eigenvector corresponding to the larger eigenvalue 1 of the

two eigenvalues ( 1 and 2 ) defined by the 2-by-2 smoothed second moment matrix 

TIIyxGyxM ))((),(),(   .                                                     (4)

Once the particular scale  ),(ˆ yx is selected, the anisotropy and the contrast are calculated by 12 /1    and

1 22c    , respectively. Here0 1£ £  and 0 1c£ £ . If the mean contrast within a region across scales is less
than 0.05, the region is considered uniform. 

3.2. Feature Probabilities

Assuming there is a total of J pixels within the image ),( yxI . Of each pixel, indexed by j in an image, Jj ,...,1 , its

position  ),( yx , its three color components and its texture descriptors p ,   ,  c  form a  8d  dimensional feature

vector jz  in dR . A random variable Z used to describe these feature vectors jz over the image is assumed to obey the

K -component mixture Gaussian model
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Here, for the  k -th component,  0k ³ is the weight subject to  1k
k
  ,  k and  kS are the mean vector and the

covariance matrix respectively, 1{ }K
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is then used to obtain the maximum likelihood estimation of :

1

ˆ arg max{log ( | )}
J

j
j

f z
Q 

Q  QÕ . (6)

We use the Minimum Description Length principle [7] to choose the number of mixture componentsK . 



3.3. Region Grouping and Image Segmentation

Given i , the conditional probability to which a feature vector jz  (corresponding to ),( yx  in the image) belongs is
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The labeling of  jz in the feature space (i.e., pixel  ),( yx  in the image ),( yxI ) to one of the  K classes,  )(ˆ jzi , is a
naïve Bayesian decision problem:

ˆ( ) arg max{ ( | )}j k j k
k

k z f z  .

(8)

Grouping  together  those  spatially  connected  pixels  with  the  same respective  labels ˆ( )jk z , ˆ( ) 1,...,jk z K ,  yields

segmented homogeneous regions in ),( yxI . 

3.4. Local Regional Features
The segmented regions are processed and their boundaries are followed to obtain the respective contours. For each region
  its contour is decomposed by the ellipse Fourier transformation [6]. This processing produces a series expansion of
the ordered positions ),( yx  composed by the first levels of harmonics (ellipses) with lowest frequencies. For each level
of ellipse, its center ( , )x y , the lengths of its semi- major and minor axes, and the orientation of the major axis are
recorded.  If  we only consider  those of the first level decomposition of   ,  together with the 8 mean values of the

respective 8 components of jz over  , there will be 11 local regional features used to represent  . We denote them as

a feature vectorφ ,  which can be considered as a middle level feature approximately representing both locations and
shapes of uniform regions of the image.

4. MULTICLASS SUPPORT VECTOR MACHINES FOR IMAGE RETRIEVAL
SVM is a  method widely used for statistical learning, classifiers and regression model design. It is used here to define
QTDIF, the associated “models” and to produce similarity measures for medical image retrieval. Primarily SVM tackles
the  binary classification  problem. The  objective  is  to  find  an  optimal  separating  hyper-plane  (OSH) that  correctly
classifies feature data points as much as possible and separates the points of two classes as far as possible. The approach
is to  map the training data into a higher dimensional (possibly infinite) space and  formulate a constrained quadratic
programming for the optimization. Different mappings construct different SVMs.

Generally speaking, for a linear problem, let ( ) Tg b ηwη  be a discriminant function to separate the two classes

in question. Here η is a feature vector, w is the weight vector, and b is the bias. Finding the OSH is to maximize 2
w ,

the margin of separation of nearest  samples between the two classes. The margin can be seen as a  measure of the
generalization ability: the larger the margin, the better the generalization is expected to be.  Given training examples

n
i Rη  from the two classes, 1,...,i N ,  and a class label  }1,1{id  for  each  iη ,  the OSH  corresponds to the
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deviation of data from the margin and parameter C controls the tradeoff between the minimization of classification errors
and maximization of margin. To solve this, the Lagrange function can be constructed as
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where i , i  are positive Lagrange multipliers. The optimization is achieved to minimize ( , , )J bwα  with respect to w
and b , and to maximize ( , , )J bwα  with respect to α . For the minimization of ( , , )J bwα , we have
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i
iid , and 0 iiC  . For the maximization of ( , , )J bwα , using these results just obtained, it

can be rewritten as,
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subject to the constraints 0
1
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N

i
iid ,  and   Ci ££ 0 . Solving the above equations we find that  0i   for  most

feature vectors iη , except that those feature vectors closest to the OSH, called support vectors, contribute a non-zero i
to the equations. 

As for the non-linear SVM, a so-called inner-product kernel is introduced to map input feature vectors into a higher-
dimensional feature space nonlinearly. The mapped features are then put into the above linear SVM method and the OSH
will be calculated based on this mapping. 

The above SVM is for two-class problems. SVM for multiple-class classification are still a research problem. So far,
several approaches have been proposed. One type has been to incorporate multiple class labels directly into the quadratic
solving algorithm [8,9,10].  Another more popular type is to combine several binary classifiers: One vs. One (OVO)
applies pair-wise comparison between classes [11]; and in One vs. All (OVA), one class is compared with the others
[12]; Directed Acyclic Graph (DAG) is similar to OVO in the training stage, but in the testing stage it uses a negative
logic and a tree structure [13]. 

In our case, 26 classes are needed but in fact more classes are contained in the dataset. So a multi-class SVM will be
employed. For the simplicity of computation, we use the logic of OVA. Besides this, as the feature vectors based on the
regional  properties  are  in a  high dimensional space,  non-linear  mapping with the Gaussian kernel is  introduced.  In
practice, 26 models are constructed in the SVM training procedure. Given an unknown class feature vector, all of the 26
models are compared with it and the respective 26 prediction values (corresponding to the signed distance of the feature
from the  OSH)  are  generated. These  prediction  values  are  similarities  between the  features  and  the  model  (topic)
compared. In this way, all images in the database are examined. For a particular model, which contains the QTDIFs and
the  classifier information.  Feature vectors compared to it  are  sorted according to the predication.  The  1000 feature
vectors corresponding to the 1000 largest predication values are chosen and considered as the 1000 best retrieved results.

5. EXPERIMENTAL RESULTS
This section describes the performances of the results for the gift system as well as our new approach and compares the
two very different techniques.

5.1. Results of QTDIF 
To test the performance of  QTDIF, images in  the Casimage database  are preprocessed. For all images, its non-trivial
local regions are segmented. In terms of the areas of the regions, they are sorted and only the 10 largest regions are
considered.  Their  blob  representations are obtained; see  Fig.  5  for  a  few example images and their  respective blob
representation  visualized.  Take  the  example  of  the  hand  bone  shown in  Fig.  5,  the  thumb is  represented  by three
connected ellipses; the wrist, one; the palm, two; and the regions between fingers by three (dim) ellipses as well. The
structure of the blobs resembles the hand bone quite well. It shows that, the blob approximation is a good middle level
representation of images. Following is the computation of regional features of each selected region m ,  10,...,1m ,

its local feature vector mφ  is computed. Thus, there are 10 11n   features in the ten selected regions. They form a

single feature vector η in the 110-dimensional vector space nR where the SVM works.



Figure 5.  Pairs of example images (left) and their respective blob visualizations (right). Upper row: X-ray of hand bone
and ultrasound scan; lower row: cells and skeleton scintigraphy.

As shown in Fig. 3, given a topic label  q  (i.e., an image representing the topic), visually similar images from the
database can be picked up manually to form a training set for q . As there are a limited number of topics in the database,
one can always form their respective training sets according to the assigned topics. To examine the performance of
QTDIF proposed in this work, the same 26 topics used in imageCLEF 2004 are chosen. The feature vector η  of each
image of all topics is fed into the multi-class SVM algorithm for topic classification, where, in all our work with SVM,
the  Gaussian kernel is selected for non-linear feature mapping.  Note that this  topic classification is different from the
image classification in general because a single image can be assigned to more than one topic training set. Therefore, this
classification is done in a non-separable feature space in essence. The training results in 26 models containing query topic
dependent features (those support vectors) as well as the decision boundaries for each of the 26 topics. 

Given a topic from the 26 topics in the test phase, the feature η  generated from every image I in the database will be
compared with the model associated with this topic by SVM. This is done in the SVM testing phase where the OVA logic
is applied. The signed distance of η  from the decision hyperplane is associated with a prediction confidence parameter
. A positive prediction strength corresponds to a test sample being assigned to a single class rather than to the ‘‘all other’’
class. The larger the prediction, the further the sample from the boundary is. Thus sorting the distances  )(I  of all
images I in the database generates the top expected retrieval results. The retrieval performance is evaluated by using the
standard evaluation program in the imageCLEF medical track [14]. The mean average precision (MAP) [17], which is
used as the major performance measure in imageCLEF is defined as the mean of the average precision scores of each of
the individual topics in the run. Geometrically, MAP is the area underneath a non interpolated recall-precision curve. The
resulting MAPs are plotted in Fig. 6. The average MAP is 0.336. Some of them are tabulated in Table 1. 

Table 1. MAP and breakeven values of the 26 topics resulting from the current approach.
Topic 3 4 7 8 9 10 11
MAP 0.2346 0.2649 0.8342 0.2159 0.4107 0.1347 0.4200 
Topic 13 14 16 20 21 23
MAP 0.2354 0.3239 0.6854 0.3191 0.2747 0.4381



5.2. Results of medGIFT
medGIFT [18] participated in the task in various submissions and using a large variety of techniques from simple one-
shot queries to automatic query expansion and manual relevance feedback, and all this also in combinations of visual and
textual retrieval. In this part we only take into account the one-shot query of the medGIFT base configuration, which is
actually the best one-shot configuration. Note that, features used in the medGIFT are not chosen based on the topics. The
MAP for this system averaged over all topics is .0.3757, which is among the best five systems. When analyzing the single
queries, it can be seen that depending on the topic, the results were extremely varied. The best query had a MAP of
0.9556 whereas the worst query had a MAP of 0.0038. For comparison, together with those of the QTDIF, Fig. 6 also
shows the distribution of the MAP results with respect to the topics.

5.3. Comparison
Comparing our results with those of medGIFT, we find that some of our results are much better. For instance, for topic
11 (human  skeleton scintigraphy  shown in Fig. 5 lower right), medGIFT only retrieves it with MAP=0.37%, whereas
QTDIF presents MAP=42%. On topic 23, the ultrasound images without colored parts in the middle (see Fig. 5 upper
right), we achieve MAP=43.81% while medGIFT MAP=9.46%. This is perhaps due to the fact that images in both topics
are  of poor contrast  and very noisy.  However,  on some topics,  the current system is not as good as medGIFT,  for
example, topics 2, 15, 24, 25, 26. Topics 2 and 15 would be represented quite alike; both are axial CT images of the lung.
For inexperienced people, it is highly possible to put them in wrong training sets. On topics 24, 25 and 26, we could still
achieve MAP>40%. This shows that the parameters in blob features could be further tuned to improve the results.

Figure 6. The MAPs of all topics resulted from both the medGIFT system (curve 1) and QTDIF (curve 2).

6. DISSCUSSION AND CONCLUSION
Differently  from general  image  collections,  medical  images  have  their  own unique  characterization.  Among  other
characteristics one feature of medical images is that in general there are a limited number of image categories, which
depend on several factors: body parts, view positions and image modalities. Based on this very fact, we have proposed a
novel image feature for content-based medical image retrieval: the proposed features are dependent on specific image
query topics. Therefore, these feature sets capture both inter-category and intra-category statistical variations to achieve
good performance of recall and precision.



Preliminary experimental results show that the Blob representation is a powerful middle level feature to capture structural
characteristics of medical images. It provides good performance for several topics. 
In the future we will investigate possible grouping methods to cluster several topics together and then for each group to
choose appropriate sets of features for CBIR in order to achieve good performance. One possibility is to group the
features together for a classification over several layers. This can mean to first identify the modality of the images (xray,
CT,  MRI,  …)  and  then,  within  the  modalities  identify  anatomic  region  and  viewing  angle.  In  connection  with  a
confidence score for this sort of “annotation” it can help us to further train our classifiers and achieve better performance
through a multi-step approach. The limit of our current approach is that the database contains many more topics than
were used for evaluation in imageCLEF. Only with high quality training data good results can be obtained and so we
need to test our system on a larger number of classes. Participation in the 2005 imageCLEF is planned to be able to judge
the system performance with unknown class images and to be able to compare the approach with other systems under the
same conditions.
Another goal is to integrate relevance feedback into the system as only relevance feedback queries can well describe the
user’s information need. In connection with our classifiers, an optimal relevance feedback strategy will need to be found.
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