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Abstract. Texture–based computerized analysis of high–resolution com-
puted tomography images from patients with interstitial lung diseases is
introduced to assist radiologists in image interpretation. The cornerstone
of our approach is to learn lung texture signatures using a linear com-
bination of N–th order Riesz templates at multiple scales. The weights
of the linear combination are derived from one–versus–all support vector
machines. Steerability and multiscale properties of Riesz wavelets allow
for scale and rotation covariance of the texture descriptors with infinites-
imal precision. Orientations are normalized among texture instances by
locally aligning the Riesz templates, which is carried out analytically. The
proposed approach is compared with state–of–the–art texture attributes
and shows significant improvement in classification performance with an
average area under receiver operating characteristic curves of 0.94 for five
lung tissue classes. The derived lung texture signatures illustrate optimal
class–wise discriminative properties.

Keywords: Texture analysis, Riesz, steerability, interstitial lung dis-
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1 Introduction

Objective assessment of texture information is a difficult task in radiology [1].
Texture is central to human image understanding and plays an important role in
efficient characterization of biomedical tissue that cannot be described in terms of
shape or morphology [2]. Early detection of diffuse disease conditions requires to
analyze very subtle changes in texture properties of the image, where computer-
ized image processing proved to significantly outperform clinical experts [1]. The
various appearances of lung tissue affected by interstitial lung diseases (ILD) in
high–resolution computed tomography (HRCT) are best characterized in terms
of texture properties [3]. Differentiation of these patterns is regarded as difficult
even for experienced radiologists. Consequently, several studies investigated the
potential of computerized classification of the lung parenchyma to assist radiol-
ogists in HRCT interpretation [4–7]. To ensure the success of such a system, the
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ability of the image attributes to encode the subtle texture signatures associated
with the various lung tissue types is crucial. In particular, localized quantifi-
cation of orientations and scales is known to be relevant for texture discrimi-
nation [8, 9]. Whereas most of the image analysis approaches to texture feature
extraction are based on the characterization of these two affine properties, all re-
quire arbitrary sampling of at least one of these two parameters (e.g., grey–level
co–occurrence matrices (GLCMs) [9], run–length matrices (RLE), local binary
patterns (LBP) [8], and non–steerable Gabor or Gaussian filterbanks [10]). The
choice of scales and orientations has a direct impact on system performance and
is difficult since these properties vary for each image pixel.

In this article, we introduce a novel texture analysis approach allowing trans-
lation invariance as well as scale and rotation covariance with infinitesimal preci-
sion. It extends our previous work [11] by using support vector machines (SVM)
to learn the respective relevance of multiscale Riesz components. Class–wise tex-
ture signatures are then obtained from linear combinations of the latter, allowing
for visual assessment of the learned texture patterns.

2 Material and Methods

2.1 Dataset

A publicly available dataset of 85 ILD cases with annotated HRCT images is used
to evaluate our approach [12]. Expert annotations were carried out in collabora-
tion by two radiologists with 15 and 20 years of experience in CT imaging. The
slice thickness is 1mm and the inter–slice distance is 10mm. The images were ac-
quired with two imaging devices at the Radiology Service of the University Hos-
pitals of Geneva: a Philips Mx8000 IDT 16 CT Scanner and a General Electric
HiSpeed CT. The five lung tissue classes encountered in most ILDs were chosen
as lung texture classes: healthy (H), emphysema (E), ground glass (G), fibrosis
(F) and micronodules (M). In each annotated slice, 2D hand–drawn regions of
interests (ROIs) are divided into 32×32 square blocks. The visual appearance of
the lung texture classes and their distribution are detailed in Fig. 4.

2.2 Multiscale lung texture signature learning

The cornerstone of our approach to multiscale lung texture signature learning
is to use the structural risk minimization principle to derive class–wise texture
prototypes from the Riesz transform. The obtained class–wise texture signature
has optimal discriminative properties for a given one–versus–all (OVA) classifi-
cation task. The Riesz transform yields steerable filterbanks and commutes with
translation, scaling or rotation [13]. The richness of the filterbank is controlled
by the order N of the Riesz R transform as:ÙR(n1,n2)f(ω) =

É
n1 + n2

n1!n2!

(−jω1)
n1(−jω2)

n2

||ω||n1+n2
f̂(ω), (1)
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for all combinations of (n1, n2) with n1 + n2 = N and n1,2 ∈ N. The vector ω
is composed of ω1,2 corresponding to the frequencies in the two image axes, and

f̂(ω) denotes the Fourier transform of f(x). The Riesz transform yields N+1
distinct components behaving as N–th order directional differential operators.
Riesz components R(n1,n2) convolved with isotropic Gaussian kernels G(x) for
N=1,2,3 are depicted in the spatial domain in Fig. 1. Multiscale versions of

N = 1

G ∗ R(1,0) G ∗ R(0,1)

N = 2

G ∗ R(2,0) G ∗ R(1,1) G ∗ R(0,2)

N = 3

G ∗ R(3,0) G ∗ R(2,1) G ∗ R(1,2) G ∗ R(0,3)

Fig. 1. Riesz filterbanks for N=1,2,3.

the filterbanks are obtained by coupling the Riesz transform with Simoncelli’s
multi–resolution framework based on isotropic band–limited wavelets [14]. Four
scales si = {1, . . . , 4} with a dyadic progression are used to cover the Nyquist
domain. The Riesz wavelet filterbanks are steerable, which means that the re-
sponse of each component G ∗ R(n1,n2) rotated by an arbitrary angle θ can be
derived analytically from a linear combination of the responses of all components
of the filterbank [15, 13]. This property enables rotation covariance of the pro-
posed texture descriptors with infinitesimal angular precision. To ensure that the
distribution of the directional information is normalized among the Riesz com-
ponents for any rotation of the texture patterns, each components are all locally
aligned to maximize the response of G∗R(N,0) at the finest scale, which is carried
out analytically and proved to improve lung texture classification performance
in [11]. This enables rotation invariance of the texture descriptors without dis-
carding precious orientation information, which is often lost when using isotropic
detectors [7, 6] or when averaging the responses of multi–oriented features as it is
commonly carried out for GLCMs, RLEs and Gaussian filterbanks [5]. To sum-
marize, the Riesz wavelets benefit from the steerability property while enabling
much richer feature extraction than rotated filterbanks and classical steerable
filterbanks [16]. Therefore, it allows multiscale and multi–directional image anal-
ysis with infinitesimal spatial and angular precision1.

1 In the discrete domain, the spatial and angular precisions are determined by Nyquist.
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In order to optimally exploit the richness of the feature detectors encom-
passed in the multiscale Riesz components for a given texture classification task,
an appropriate weighting scheme of the energy of the responses of the multiscale
Riesz components is required. The goal is to build an optimal texture signature
ΓN
c of the class c (versus all) from a linear combination of the multiscale Riesz

components as:

Γ
N
c = w1

�
G ∗ R(N,0)

�
s1

+w2

�
G ∗ R(N−1,1)

�
s1

+ · · ·+w4N+4

�
G ∗ R(0,N+1)

�
s4

. (2)

l1–norm support vector machines (SVM) are used to find the optimal weights
w

T = (w1 . . . w4N+4) in the sense of structural risk minimization [17] as:

min
w,ξ,b

¨
||w||21
2

+C

nX
i=1

ξi

«
subject to yi(K(w,xi)− b) ≥ 1− ξi, ξi ≥ 0. (3)

where ξ is the slack variable of the soft margin, C is the cost of the errors, xi

are the texture instances i = 1 . . . n expressed in terms of the energy of the
Riesz components, and yi are the corresponding labels. K(xi,xj) is a Gaussian

kernel as: K(xi,xj) = exp(
−||xi−xj ||

2
1

2σ2 ). The contribution of each Riesz compo-
nent is determined by the weight that its corresponding energy level received
in Eq. (3). For multiclass classification with Nc classes, the OVA approach is
used. The model with the highest decision level for the positive class determines
the final class cmax as: maxc∈{1,...,Nc} {K(wc,xi)− b}. The global workflow of
the proposed approach for lung texture signature extraction and classification is
summarized in Fig. 2.

Fig. 2. Flow chart of lung texture signature learning and classification.

3 Results

The proposed methods are evaluated both qualitatively and quantitatively on
artificial and real lung textures. The principle of multiscale texture signature
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Fig. 3. Lower row: multiscale texture signatures Γ 8
c of the upper row for N=8.

learning is first demonstrated on artificial data, where scale and rotation covari-
ance are investigated in Fig. 3. All artificial texture patterns are containing noise
and their signatures are learned when confronted to white noise. The first two
signatures are learned from two checkerboards with various scales. The distribu-
tion of the weights w for the scales {s1, . . . , s4} are {0.1%, 18.5%, 81.1%, 0.3%}
for the small scale and {2.3%, 3.9%, 14%, 79.8%} for the large scale checkerboard.
The rotation covariance is demonstrated with oriented stripes in the third and
fourth columns of Fig. 3. Robustness to non–rigid transformations is illustrated
with deformed versions of the stripes and checkerboard in the last two columns.

healthy emphysema ground glass fibrosis micronodules

Γ 4
healthy Γ 4

emphysema Γ 4
ground glass Γ 4

fibrosis Γ 4
micronodules

3011 blocks, 407 blocks, 2226 blocks, 2962 blocks, 5988 blocks,

7 patients. 6 patients. 32 patients. 37 patients. 16 patients.

Fig. 4. Distribution of the texture classes and visual appearance of the class–wise
multiscale lung texture signatures Γ 4

c .

The visual appearance of the five lung tissue classes and the corresponding
learned class–wise texture signatures over the entire dataset in OVA configu-
rations are shown in Fig. 4. Fig. 5 shows the receiver operating characteristic
(ROC) analysis of the classification performance of the proposed methods over
the 85 folds of a leave–one–patient–out cross–validation. We compared our ap-
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proach with two commonly used lung texture feature sets: LBPs [4] and GLCMs
combined with RLEs [5]. We optimized the parameters of each approach using
an exhaustive grid search. A radius R ∈ {1, 2} pixels and a number of samples
P ∈ {8, 16} are used for LBPs, according to [4]. For GLCMs and RLEs, distances
of {1, 2, . . . , 5} are used and the texture measures from [9] are averaged across
orientations of {0◦, 45◦, 90◦, 135◦}. A grey–level reduction of 8 levels obtained
best performance when compared to 16 and 32. All approaches are combined
with 22 grey level histogram (GLH) bins in [-1050;600] Hounsfield Units (HU)
and the percentage of air pixels with values ≤-1000 HU. Best area under ROC
curves (AUC) are of 0.941, 0.936 and 0.925 for Riesz (N=4), LBPs (R=1, P=8)
and GLCMs with RLEs, respectively.

healthy (H) emphysema (E) ground glass (G)

fibrosis (F) micronodules (M)
confusion matrix of

Riesz and GLH features

H E G F M
H 82.7 2.9 0.3 0.2 13.9
E 10.8 72.7 3.2 8.6 4.7
G 15.4 0.1 68.4 11.5 4.6
F 0.6 1.5 7 84.2 6.6
M 12 0.3 1.7 2.5 83.5

Fig. 5. ROC analysis for the various texture analysis approaches and confusion matrix.
N = 4 for all Riesz features.

4 Discussions and Conclusions

We propose a novel texture analysis method to learn multiscale texture signa-
tures based on Riesz wavelets and SVMs, which is rotation and scale covariant. A
pixel–wise alignment of the Riesz templates ensures the normalization of the dis-
tribution of the directional information over the Riesz components, which allows
both inter–instance rotation invariance and intra–instance rotation covariance,
similarly to rotation–invariant LBPs [8]. The important scales and orientations
are learned based on the structural risk minimization principle and therefore do
not need a priori assumptions, which is an advantage when compared to other
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state–of–the–art texture features such as GLCMs, RLEs and LBPs. Linear com-
binations of multiscale Riesz components allow discovering class–wise important
discriminatory patterns and visual analysis of their relevance. The multiscale
texture signatures shown in Fig. 3 demonstrate the ability of our approach to
characterize texture patterns with multiple and varying scales and orientations.
A relative robustness to non–rigid transformations is also observed. The lung
texture signatures depicted in Fig. 4 are showing important class–wise discrim-
inative properties. Γ 4

fibrosis clearly resembles the fibrosis patterns characterized
by air bubbles surrounded by high–density walls of collagen. The same is true for
Γ 4
micronodules, where the micronodule detector is clearly visible with a high peak

in the center of the signature for relatively small scales. Γ 4
healthy and Γ 4

ground glass

are found to be similar, which is coherent to the definition of ground glass char-
acterized by a diffuse increased opacity, where the bronchovascular structures
remain visible. Γ 4

healthy and Γ 4
ground glass are therefore implementing a hybrid

ridge and peak detector corresponding to the projections of the bronchovascular
structures in 2D HRCT slices. Emphysema patterns are the result of the destruc-
tion of lung tissue, which is replaced by air. This process does, therefore, not
engender the typical texture signature that our method aims to learn. LBPs seem
to better encode the transitions between air and parts of remaining tissue, which
shows the potential of combining Riesz and LBP. ROC analysis of the classifica-
tion performance of the texture analysis approaches reveals an excellent average
performance AUC=0.94 for the proposed approach, based on realistic data and
methodology. It outperforms LBPs and GLCMs combined with RLEs in terms of
overall classification performance with high statistical significance based on a 1–
tailed paired T–test: p = 4.75×10−20 for Riesz versus LBPs and p = 5.59×10−43

for Riesz versus GLCMs combined with RLEs. This performance suggests that
it can provide valuable assistance in the difficult task of texture analysis of lung
tissue patterns in clinical routine with high reliability. In future work, class–wise
feature combination and selection among various Riesz orders and other texture
features such as LBPs, GLCMs and RLEs will be investigated using SVM–based
recursive feature elimination. We are also currently extending our approach to
three dimensions. It is expected to provide even better results, since the number
of possible scales and orientations increases exponentially in 3D. A priori knowl-
edge on their organization in 3D is difficult to obtain, because textures existing
in more than two dimensions cannot be fully visualized by humans.
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