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Near-Affine-Invariant Texture Learning for Lung
Tissue Analysis Using Isotropic Wavelet Frames

Adrien Depeursinge, Dimitri Van de Ville, Alexandra Platon, Antoine Geissbuhler,
Pierre-Alexandre Poletti, and Henning Miiller

Abstract—We propose near-affine-invariant texture descriptors
derived from isotropic wavelet frames for the characterization
of lung tissue patterns in high-resolution computed tomography
(HRCT) imaging. Affine invariance is desirable to enable learning
of nondeterministic textures without a priori localizations, orien-
tations, or sizes. When combined with complementary gray-level
histograms, the proposed method allows a global classification ac-
curacy of 76.9 % with balanced precision among five classes of lung
tissue using a leave-one-patient-out cross validation, in accordance
with clinical practice.

Index Terms—High-resolution computed tomography (HRCT),
interstitial lung diseases (ILDs), isotropic wavelet frames, lung
tissue analysis, texture analysis.

1. INTRODUCTION

HE appearance and quantification of the types of lung
T tissue patterns in high-resolution computed tomography
(HRCT) are very informative for establishing the differential di-
agnosis of interstitial lung diseases (ILDs). ILDs regroup more
than 150 disorders of the lung parenchyma leading to breathing
dysfunction [1]. The diagnosis of these pathologies is estab-
lished based on the complete history of the patient, a physical
examination, laboratory tests, pulmonary function testing, as
well as visual findings on radiological recordings. The primary
imaging used is the chest radiograph because of its low cost
and weak radiation exposure. It also provides a quick overview
of the entire chest. However, chest radiographs are normal in

Manuscript received July 7, 2011; revised November 6, 2011; March 12,
2012; accepted April 28, 2012. Date of publication May 11, 2012; date of
current version July 5, 2012. This work was supported by the Swiss National
Science Foundation under Grant 205321-130046 and Grant PPOOP2-123438,
the Center for Biomedical Imaging, and the European Union Seventh Frame-
work Program in the context of the Khresmoi Project FP7-257528.

A. Depeursinge is with the MedGIFT Group, Business Information Systems,
University of Applied Sciences Western Switzerland, Sierre 3960, Switzerland,
and also with the University Hospitals of Geneva, Geneva 1211, Switzerland
(e-mail: adrien.depeursinge @hevs.ch).

D. Van de Ville is with the Department of Radiology and Medical Informatics,
University of Geneva, Geneva 1211, Switzerland, and also with Ecole Polytech-
nique Fédérale de Lausanne, Lausanne CH-1015, Switzerland (e-mail: dimitri.
vandeville @epfl.ch).

A. Platon, A. Geissbuhler, and P.-A. Poletti are with the Department of
Radiology and Medical Informatics, University Hospitals of Geneva, Geneva
1211, Switzerland (e-mail: alexandra.platon@hcuge.ch; antoine.geissbuhler@
hcuge.ch; pierre-alexandre.poletti@hcuge.ch).

H. Mulller is with the MedGIFT Group, Business Information Systems, Uni-
versity of Applied Sciences Western Switzerland, Sierre 3960, Switzerland
(e-mail: henning.mueller @hevs.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITB.2012.2198829

more than 10% of the patients with some forms of ILD and can
provide a confident diagnosis in only 23% of the cases with lung
diseases in general [2]. When the synthesis of this information
arouses suspicions toward an ILD, HRCT imaging of the chest
is often required to acquire an accurate visual assessment of the
lung tissue as the 3-D form of HRCT data avoids superposition
of organs and provides precise representations of the pattern and
distribution of the lung tissue with a submillimetric resolution.
It quickly became the gold standard imaging protocol for the
diagnosis of diffuse pulmonary parenchymal diseases.

Interpreting HRCT images of the chest represents a challenge
even for trained radiologists and lung specialists [1], [2]. The
3-D form requires significant reading time, effort, and experi-
ence for a correct interpretation [3]. In emergency radiology,
for instance, radiologists have recourse to a large diversity of
imaging modalities applied to different organs. They have to
provide a first radiological report with preliminary diagnosis
rapidly without being specialized in a single domain. This may
result in errors by omission or confusion of diverse pathologic
lung tissue types [4].

Owing to the intrinsic complexity of the interpretation of
HRCT image series, a real-time image-based computerized as-
sistance appears useful for radiologists as a second opinion. The
taxonomy used by radiologists to interpret patterns in HRCT
images often relates to texture properties, which suggest that
texture analysis is relevant to the characterization of an ILD that
is typically diffuse.

A. Lung Texture Analysis in the Literature: State of the Art

A wide range of features have been proposed for charac-
terizing various lung tissue patterns associated with chronic
obstructive pulmonary diseases (COPDs) and ILDs [5]:

1) gray-level histograms (GLH) [3], [6]-[21];

2) mathematical morphology and shape [3], [7], [8], [11];

3) gray-level cooccurrence matrices (GLCM) [6]-[12], [14],

[15];

4) run length (RLE) [6], [9], [11], [12], [14], [15];

5) filter banks and wavelets [7], [8], [13], [16]-[24];

6) others [such as fractals and local binary patterns (LBPs)]

[12]-[15], [25].

The heterogeneous feature group composed of GLH, RLE,
and GLCM was used in most of the studies [6]-[11]. A more
comprehensive review of the techniques used for lung tissue
categorization in the literature along with qualitative evaluations
can be found in [5]. Although being able to well describe the
lung tissue patterns, the performance of features derived from
GLCM and RLE strongly depends on the underlying parameters
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(i.e., scales and directions). Most of the texture features used
in the literature in lung texture analysis are modeling similar
information: the spatial periodicity and scales contained in the
images (GLCM, Gabor filters, wavelets, LBPs, and so on). The
question is, which one characterizes the patterns best and is the
most adaptable to the needs of lung tissue analysis in HRCT
imaging.

Although not being the most common in the state of the art of
computer-aided diagnosis (CAD) in HRCT imaging of the chest,
filtering techniques have several desirable properties. First, they
are providing continuous responses to transient patterns in im-
ages. This is not the case for GLCMs that are based on the
sum of occurrences of pixel pairs. GLCMs are as a consequence
not able to characterize the similarity between series of con-
tiguous pixels, which are often carrying important information
in medical images. Filtering allows us to seek for specific fea-
tures in the images (i.e., edge or ridge detection) by modeling
the shape of the filters either in the spatial or in the frequency
domain. Wavelet transforms (WTs), which are implemented as
filter banks, have the desirable property of being multiscale and
thus allow covering the frequency domain (scale covariance).
Filtering techniques and translation-invariant wavelets offer an
overcomplete feature set able to fit most of the texture functions
under the condition that they efficiently derive features from the
coefficients, being perfectly complementary to the measures of
density using GLH.

The specific texture signatures of the lung tissue patterns can
hardly be described by deterministic methods as intraclass varia-
tions are very high due to the influence of factors such as the age
of the patient, smoking history, and extend of the disease. Highly
flexible texture modeling is required to catch subtle texture sig-
natures of a given lung tissue pattern. In particular, invariance
of the texture descriptors to affine properties (i.e., translation,
rotation, and scale) is desirable to obtain a system that is able
to impartially learn any texture appearance independently of
prevailing localizations, orientations, or sizes.

The main research contribution of this paper is the de-
velopment of a near-affine-invariant set of texture features
(translation- and rotation-invariant as well as scale covariant)
based on the WT. We combine the isotropic properties of poly-
harmonic B-spline wavelets [26], the scale-covariant properties
of the quincunx subsampling, and the translation invariance of
redundant frame transforms [27], [28]. We investigate the ability
of the proposed wavelet-based texture features to discriminate
among the classes of healthy and pathological lung tissue types
in HRCT images. GLHs model a complementary information
corresponding to the density of the structures in CT imaging
and are thus used along with WTs.

II. METHODS

Our approach to obtain near-affine-invariant descriptions and
to learn the lung tissue textures is described in this section.
The importance of the gray-level values for the characterization
of lung parenchyma densities is highlighted in Section II-A.
Complementary texture descriptors based on specific designs of
WTs are detailed in Section II-B.

A. GLHs

Grayscale values in medical images contain valuable infor-
mation for the characterization of objects and textures and are
complementary to texture features. In HRCT imaging, scanners
deliver 12-bit digital imaging and communications in medicine
images with voxel values in Hounsfield units (HU) in the range
[—1024, 3071]. These values correspond univoquely to densi-
ties of the anatomic organs and thus allow the identification
of lung tissue components [29]. To extract this information,
GLHs with Ny;,s bins are built. The value of each bin is di-
rectly used as visual feature. The air value given by the number
of pixels with values <—1000 HU is computed as additional
feature [30]. Preliminary results show that using the values of
the bins directly allows better categorization of the lung tissue
patterns compared to statistical measures of the distributions
(i.e., mean, variance, etc.). Features from histograms showed
to be significantly different for six lung tissue patterns from 38
patients using a Mann—Whitney U test in [31].

B. WTs for Lung Tissue Analysis

This section details custom designs of redundant WTs that
can provide near-affine-invariant texture features. WTs have
been applied to various domains such as signal compression,
denoising, pattern recognition, and others. They have received
attention in biomedical applications [32]-[34]. WTs are able to
detect transients in signals and contain all the information to per-
fectly reconstruct the signal. They allow signal approximation
with the error decreasing inversely proportional to the number
of wavelet coefficients used, which is suitable to obtain compact
feature representations for either compression or classification
purposes.

1) Translation, Rotation Invariance, and Scale Covariance:
The WT has several shortcomings for texture analysis in the
classical form that are partly due to the sampling of digital
images. It is shown how the standard WT can be modified
slightly to obtain near-affine-invariant texture features.

a) Translation invariance: wavelet bases versus redundant
wavelet frames: The WT exists in two flavors: bases and frames.
Wavelet bases provide a one-to-one decomposition (that may be
orthogonal or not), making them ideally suited for image com-
pression. They have a fast implementation but their drawback is
the lack of translation invariance. In the standard dyadic discrete
WT (basis), multiple scales are obtained by downsampling the
image [ by a factor of 2 at each iteration j, which implements
the pyramidal image decomposition. Although bases provide
translation-invariant representations in the continuous domain,
sampling the translation factor b over the uniform grid of digital
images removes this property. The image I may be translated
by a continuous factor 7, which is not a priori equal to the grid
interval a’ by at scale @’ (see Fig. 1 for an example in 1-D). The
coefficients obtained with a wavelet 1); of I are different from
those obtained with an image I translated by 7 # a’ by

W (al,b) # Wi (@l ,b—7). (1)

To obtain translation-invariant features, one solution is to
keep the original resolution of I and to oversample i so that
the minimum shift 7,,,5, is equal to a’ by, and all values of T are
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Fig. 1. WT is not shift invariant when sampled on a uniform sampling grid
because the grid step a’ by may differ from a continuous translation 7 of the
signal s(z) [35].

multiples of a’by. The discrete wavelet frame (DWF) decom-
position yields highly redundant image representations offering
more flexibility for image analysis and performing well for tex-
ture analysis. It was first proposed in 1995 [27] and has been
widely used [36]-[40], also with biomedical images [41]. When
compared to the WT, the translation invariance of DWF tends
to decrease the variability of the estimated texture features, im-
proving classification performance. The use of features based on
the DWF to classify lung textures is described in Section II-B3
and evaluated in Section III-B.

b) Scale covariance and rotation invariance: isotropic
polyharmonic B-spline wavelets and the quincunx lattice: The
combination of isotropic polyharmonic B-spline wavelets along
with quincunx subsampling offers several desirable properties
for scale invariance and rotation invariance [26]. Inspired by
Marr’s model for the mammalian early visual system [42], we
propose the use of zero-crossing detection of the Laplacian-
of-Gaussian filtered image [43] for the analysis of lung tis-
sue patterns in HRCT. This is supported by the following
hypotheses.

1) The orientation of the detector has to be aligned with
the locally dominant orientation, the orientation of the
underlying segment of zero crossings.

2) This orientation is also the one at which the zero crossing
has the maximum slope.

3) The lines of zero crossings correspond to the orientation-
independent differential operator: the Laplacian A =

2 2
57 + i

In other words, ¥a,, is able to “face” image edges in any
direction as being isotropic. It also offers an appropriate tradeoff
between spatial localization and bandwidth, which allows to
locally examine edges present in a portion of the spectrum of
the image. ¥a, can thus be the ideal filter for texture analysis
and the question is how to best implement a multiscale version
of ¥, on the Cartesian grid imposed by digital images.

A new family of wavelets has been proposed for an isotropic
localization operator that makes the polyharmonic B-spline
scaling function converge to a Gaussian as their order in-
creases [26]. These isotropic polyharmonic B-spline wavelets
are derived from elementary m-harmonic cardinal B-splines,
where the second moment is well defined. It was demonstrated
that these wavelets behave as a ~yth-order Laplacian A for low
frequencies. The isotropic polyharmonic B-spline (3, is a can-
didate to approximate Gaussian-like basis functions as it con-

verges to the Gaussian when the order increases

6 6 2
By (x) ~ p— exp (—H;{ ” ) @)

with x € R2, and a standard deviation o = /~/12. The con-
vergence is fast: the normalized squared differences between
B, and its corresponding Gaussian function are inferior to 5%
for v > 3. Thus, isotropic polyharmonic B-spline wavelets im-
plement a multiscale smoothed version of the Laplacian from
which the initial scale can be tuned through . This wavelet v,
at the first decomposition level, can be characterized as

¥y (M%) = AT {6} (x) 3)

where ¢ is an appropriate smoothing (low pass) function and M
is the subsampling matrix.' ~ tunes the iterate of the Laplacian
operator (comparable to the traditional vanishing moments).
Large values of v reduce the energy of the wavelet coefficients
but increase the ringing effect [44]. ¢, yields symmetric filters
that have a linear phase response, where the delay (shift) is pre-
dictable and no phase distortion is introduced. Thus, 1, allows
us to preserve the shift invariance provided by the redundant
frame transform.

The improved isotropy of the polyharmonic scaling and
wavelet functions allows a more flexible choice than for tra-
ditional tensor-product B-spline wavelets of the subsampling
scheme defined by the matrix M. The choice of the subsam-
pling scheme defined by M in itself has an important influence
both on scale covariance and rotation invariance. Two main sub-
sampling schemes are found in the literature for the 2-D case:
dyadic and quincunx, the former being by far the most widely
used. The quincunx subsampling removes one of two samples,
while the dyadic one removes three of four samples as shown
in Fig. 2. It corresponds to a similarity transform in 2-D.?

With particular wavelets, dyadic subsampling enables sepa-
rability of the WT allowing computational efficiency because
wavelet coefficients within each subband can be obtained by
successive 1-D convolutions along the columns and the rows of
the image. However, the dyadic lattice has two drawbacks to
perform texture analysis. On the one hand, the scale progres-
sion is coarse as images are downsampled by a factor of 2 (in
each dimension) between two decomposition levels. Relevant
information might be padded out when having major energy
contained in a narrow subband located between two successive
levels of the dyadic transform. Subtle changes in the scale of
lung tissue patterns (e.g., micronodules versus bronchovascular
structures) can be neglected by the dyadic scale progression [17].
On the other hand, although separability allows fast WTs, this
process tends to favor the vertical and horizontal directions, and
produces a so-called diagonal wavelet component [46], which
does not have a straightforward directional interpretation.

The scale progression of the quincunx subsampling scheme
defined by Myincunx = [1 1;1 — 1] is slower than for dyadic

'In the frame transform, M corresponds to the upsampling of the wavelet
filter.

2It is important to note that the extension of the quincunx subsampling in
more than two dimensions does not correspond to a similarity transform for
two-channel filter banks [45].
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Fig.2. (Top) Two iterations of the DWF are shown, which corresponds to three
iterations of the QWE. At each decomposition level, the filter is upsampled by
a factor of 2 and v/2 for DWF and QWF, respectively, to obtain a multiscale
representation. The DWF yields three subbands per scale, whereas QWF only
yields one.

subsampling, with an equivalent 1-D downsampling factor of
/2 instead of 2 for dyadic [47]. Compared to the dyadic sepa-
rable case, Muincunx preserves isotropy and the wavelet space
is spanned by only one wavelet subband S per decomposition
level (versus three for separable dyadic) [48]. This leads to a
direct and easy interpretation of the subbands; the small num-
ber of subbands also breeds small feature spaces (preferable for
classification).

The desirable properties of the isotropic polyharmonic
B-spline wavelets combined with the quincunx subsampling
and the redundant frame transform are summarized in Table I.
This combination yields isotropic quincunx wavelet frames
(QWFs) that are near-affine invariant: QWF are translation- and
rotation-invariant as well as scale covariant. QWFs are evalu-

DESIRABLE PROPERTIES OF THE COMBINATION OF ISOTROPIC POLYHARMONIC

TABLE I

B-SPLINE WAVELETS AND THE QUINCUNX LATTICE ALONG WITH A

REDUNDANT FRAME TRANSFORM

translation scale rotation
invariance covariance invariance
isotropic i initialization of near Isotropic:
. symmetric filters: implement a
polyharmonic the scale .
. no phase . multiscale
B-spline . . progression
distortion . smoothed
wavelets tunable with ~ .
version of A
finer scale
. progression
quincunx preserves
subsampling - compared fo isotropy
dyadic: /2
instead of 2
redundant no image .
N . multiscale -
frame transform downsampling

ated and compared to DWF for the classification of the lung
tissue patterns in Section III-B.

2) Features From the Wavelet Coefficients: For the classifi-
cation of lung tissue patterns, a subset of features able to charac-
terize the coefficients of the wavelet filterbanks is required. The
wavelet frame transform yields a number of wavelet coefficients
N, that is directly proportional to the number of pixels N, of
the input image, the number of iterations .J, and the number of
subbands per iteration Nguphand: Ve = Npix X J X Ngubband-
Four iterations of DWF (three subbands per iteration) of an
HRCT slice of 512 x 512 lead to more than three million co-
efficients. Classification algorithms can hardly learn from such
a high-dimensional feature space and compact feature repre-
sentations are required. In the literature, localized energy mea-
surements were often used to characterize the coefficients in
the subbands [27], [36], [49]. As an alternative, Portilla et al.
showed that Gaussians scale mixtures (GSM) are appropriate
to model the distributions of the wavelet coefficients through
the successive subbands as well as in a spatial neighborhood
within the same subband [50].AThis is related to the admis-
sibility condition of wavelets ()(0) = 0), which imposes that
the global mean of the wavelet coefficients is close to zero.
Based on this assumption, the distributions of the wavelet co-
efficients in each subband S were characterized through the
parameters of a simple GSM model of two Gaussians with a
fixed mean p¢1, 19 = p and two standard deviations oy 5, which
are estimated using the expectation—maximization (EM) algo-
rithm [51]. For each subband, y is initialized with the mean of
the wavelet coefficients S;. o1 o are initialized using the range
rs;, = max(S;) — min(S;)asfollows: 01 = rg,,01 = 73, /10.
A high stability of the EM algorithm was also observed with
various initializations of o; and 5. The two Gaussians have a
weight of 0.5 each. Thirty iterations of the EM algorithm were
used, although a convergence of the parameters was reached
after ten iterations in most cases.

3) DWEF': The ability of the DWF combined with GLH to
discriminate among five lung tissue patterns is evaluated and
compared with QWF. A family of B-splines of various degrees
is used as wavelet basis in a separable transform based on the
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dyadic lattice for upsampling the filters. B-spline wavelets are
compactly supported by smooth piecewise polynomials from
which the degree o modulates their scale-space properties [52].
This is convenient for analyzing medical images where the vary-
ing scales of the objects require adjustable wavelets. The sym-
metric B-spline is expressed in the Fourier domain as

B (w) = (W)H €

The ¢5-norm of composite diagonal coefficients C'; (x) is com-
puted for each decomposition level j as follows:

Ci(x) = /(G H 2 (3) + (G (%) ()

where (G, H,);(x) and (G, H,);(x) are the coefficients re-
sulting from the convolution with the high-pass filter on x and
with the low-pass filter on y and vice versa. The norm of both is
computed because little directionality is contained in lung tissue
textures [17].

C. Blockwise Classification of the Lung Parenchyma

This section describes the steps of the blockwise classifi-
cation with texture (either DWF or QWF) and GLH features.
A semiautomatic segmentation of the lung volumes is used to
locate the lung parenchyma. Then, the segmented regions are
entirely categorized using combined texture and GLH features
in overlapping blocks.

1) Semiautomatic Segmentation of the Lung Volumes: Seg-
mentation of the lung volumes is a required preliminary step to
lung tissue categorization [53]. The result of this step is a binary
mask M, that indicates the regions to be analyzed by the
texture analysis routines. Since the geometries of the lungs are
subject to large variations among cases, semiautomatic segmen-
tation based on region growing and mathematical morphology
is used. Starting from a seed point p(z, y, z) defined by the user,
each 26-connected neighbor is added to the region My, if the
summed value of its own neighbors differs less than a given
variance defined by the user. The resulting binary mask My
describes the global lung regions well but contains many holes
where the region growing algorithm was stopped by dense re-
gions such as vessels or consolidations of the lung parenchyma.
To fill these holes, a closing operation is applied to M,y using
a spherical structuring element. Two parameters need to be set:
the radius r of the spherical structuring element in millimeters
and N,,,, which defines the number of successive closing oper-
ations. Although parameter values » = 5 and N,, = 1 allowed
satisfactory lung segmentation, a separated tuning was required
for a few cases to obtain optimal segmentation results [54].

2) 3-D lung tissue categorization: In order to automati-
cally categorize every pixel of My, each 2-D slice is di-
vided into overlapping blocks. Preliminary results using block
sizes of {8 X 8;16 x 16;24 x 24;32 x 32;40 x 40;48 x 43;
56 x 56;64 x 64} showed that blocks of size 32 x 32 have the
best tradeoff between classification performance and localiza-
tion. NVyins = 22 showed to be an appropriate tradeoff between
discriminatory properties and dimensionality with a subset of 52
patients in [17]. For each block, 22 bins bin; of GLH in [-1050,

bin,

] bin,

\Pa
IS
. €T, ._’ =Y

|_cr2'

o
o

8 iterations
of QWF

original image \ o

Fig. 3.
GLH.

Construction of the feature vector v for each block using QWF and

600] and the number of air pixels pixz,;, are concatenated into
a single feature vector v with GSM parameters of each iteration
of either DWF or QWE. An example of v for eight iterations of
QWF is depicted in Fig. 3. Table II summarizes the GLH, DWF,
and QWF features. Each feature is normalized using a linear
mapping between 0 and 1 from each realization to give an equal
weight to each of them. No feature weighting or selection is
used for the combination of heterogeneous attributes. A support
vector machine (SVM) classifier with a Gaussian kernel learns
from the space spanned by v to find the decision boundaries
among five classes of lung tissue types using a one-versus-one
approach. SVMs have shown to be effective to categorize texture
in wavelet feature spaces [39] and in particular lung tissue [21].
The optimal cost of the errors C' and the width of the Gaussian
kernel o are found with a grid search with C' € [0, 10,. . ., 100]
and o € [1072,107"% ... 10?] using a fivefold cross valida-
tion on the training set. Paired (C; o ) values that enabled best
average classification accuracy among the fivefolds are kept.
For each case, the whole lung parenchyma is categorized using
a distance between the centers of the blocks equal to 4 pixels,
leading to an overlap of 87.5%.

D. Dataset

The dataset used is part of a publicly available database of
ILD cases [55] containing HRCT images with a slice thickness
of 1 mm. 1448 hand-drawn regions of interest (ROIs) were an-
notated in 2-D HRCT slices in a collaborative fashion by two
radiologists with 15 and 20 years of experience at the Univer-
sity Hospitals of Geneva (HUG). The in-plane resolution of the
images is 512 x 512 pixels with an interslice gap of 10 mm. A
complete description of the database can be found in [55]. HRCT
image series of 85 patients are used to evaluate the performance
of the proposed approach. The hand-drawn ROIs are subdivided
into 32 x 32 blocks for evaluating the methods. For blocks to
be part of one of the tissue classes, at least 75% of the pixels
need to be in the annotated region. The distributions and visual
aspects of the five lung tissue classes are detailed in Table III.
A total of 17848 blocks were used for the evaluation. The diag-
nosis of each case was confirmed either by pathology (biopsy
and bronchoalveolar washing) or by a laboratory/specific test.
In some cases with an early stage of ILD, healthy tissue was
annotated in normal parts of the lungs to increase the amount
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TABLE I
SUMMARY OF THE FEATURE GROUPS
feature group v dim(v)
GLH v = (bing biny bing1  piZair) 23
DWF v=(p,01,2(G1) p,012(C1) p,01,2(H1) po1,2(Gy)  po12(Cy)  poo12(Hy)) | 3x3xJ
QWF V=(u,01 2(51) M, 01 2(SJ)) 3xJ

J is the number of iterations of the WTs.

TABLE III
VISUAL ASPECT AND DISTRIBUTION OF THE 32 X 32 BLOCKS PER CLASS OF LUNG TISSUE PATTERN

visual
aspect

tissue type

healthy

emphysema

micronodules

ﬁgi‘ésis

ground gla;s

hand—drawn ROIs

150

101

427

473

297

32 x 32 blocks

5167

1127

2313

3113

6133

patients 7 6

32

37

16

Note that a patient may have several types of lung disorders.

of healthy annotated tissue, as finding HRCT scans of healthy
patients was difficult.

E. Validation Strategy

In order to estimate the generalization performance of the
classification of 32 x 32 blocks, a leave-one-patient-out cross
validation (LOPO CV) is used. LOPO CV splits training and
testing sets based on patients and has several advantages when
compared to other validation methods [56]. First, when com-
pared to the classical leave-one-out (LOO) CV, it ensures that
all ROIs belonging to the same patient are contained in the same
fold and thus do not allow to train and test with identical pa-
tients. This situation corresponds to the clinical routine where
the CAD system is trained using the entire database and unseen
ROIs from an unknown patient are classified. Second, LOPO
has the advantage of LOO where global experience is perfectly
reproducible when compared to Ny, 45-fold CV because no ran-
dom draw is carried out with LOO to create the folds. This
is desirable when searching for optimal parameters where the
variation of the evaluation conditions introduced by a random
draw of the folds in N¢,1qs—fold CV can lead to an inappropriate
choice of parameters, especially when the number of patients
is fairly low for some classes. At last, the computational cost
is affordable with Ny, 45 equals to the number of cases Nc,ges-
The number of classifiers to train is equal to N yges-

III. RESULTS

The visual features are evaluated and compared through ex-
periments to identify groups of visual features (GLH and tex-
ture) that allow the best discrimination among the patterns for
further integration into a CAD.

A. OQWF and GLH

The normalized histograms of the most frequent patterns and
their respective mean, standard deviation, along with third and
fourth moments (skewness and kurtosis) are depicted in Fig. 4.
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Fig. 4. (a)-(e) GLHs of the most frequent lung tissue patterns. The standard
deviation of each bin is shown with dashed lines. Each histogram is obtained
from the average of histograms computed over 32 x 32 blocks of the full dataset,
so single cases include a much larger variability. (a) Healthy. (b) Emphysema.
(c) Ground glass. (d) Fibrosis. (e) Micronodules.

The confusion matrix of a LOPO CV with all 85 patients
using QWF and GLH is shown in Table IV. The associated
performance measures are listed in Table V.

The complementarity of QWF and GLH features is investi-
gated in Fig. 5.
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TABLE IV
CONFUSION MATRIX OF THE BLOCKWISE CLASSIFICATION USING QWF WITH
ORDER 7y = 2 AND GLH FEATURES AND LOPO CV IN %

TABLE VI
MEAN ACCURACIES IN % OF COMBINED WAVELET AND GLH FEATURES USING
A LOPO CV WITH ALL 85 CASES

ground a=1 a=2 a=3
healthy | emphysema glass fibrosis | micronodules class y=2 ¥=3 v=4 P
healthy 67.28 6.87 7.22 1.22 1741 healthy DWF | 87.64 | 86.64 | 87.63 b= 0.008
emphysema 4.91 78.72 4.52 7.25 4.6 QWF | 88.45 | 884 87.26 '
ground glass | 11.79 0.75 7136 | 12.87 3.24 emphysema | DWF | 9586 [ 9576 [ 96.03 = 0.297
fibrosis 2.28 2.75 8.03 82.73 4.21 QWF 96 96.07 | 95.81
micronodules | 10.96 0.67 3.09 3.71 81.56 ground glass | DWF | 8764 [ 8652 178664 | "~ o/ 55
QWF | 88.38 | 87.29 | 86.62
. DWF | 8996 | 90.9 | 8865
fibrosis _— = 0.446
TABLE V QWF | 9051 | 889 | 8853 P
PERFORMANCE MEASURES OF THE BLOCKWISE CLASSIFICATION USING QWF icronodules | DWF | 87.91 872 87.63  0.008
WITH ORDER 7 = 2 AND GLH FEATURES AND LOPO CV IN % QWF | 90.51 | 8739 | 87.09 p="
recall | precision | specificity | F-measure | accuracy multiclass DWF 7451 73.52 733 p=1.26x10"%
health 5892 | 67.28 9431 62.83 88.45 QWF | 76.93 | 7403 | 7266
carthy : : - : . Best accuracies are marked in bold. The statistical significances of the comparisons of best
emphysema 77.57 78.72 97.87 78.14 96 performing orders between DWF and QWF are assessed using a paired t-test (two-tailed).
ground glass 80.92 71.36 90.55 75.84 88.38 Best orders are underlined.
fibrosis 80.8 82.73 93.97 81.75 90.5
micronodules | 80.88 81.56 93.78 81.22 90.51
A. GLH of the Lung Tissue Patterns
‘ ' ' ' " GLH + % air —= GLHs show high variability of their distributions among the
- GLH + % air + QWF (y=2) mm— . . ¢
085 - 1 five patterns. The healthy pattern is constituted of soft tissue
with HU values in the range [—1050, —300] and has a mean
08 - 1 value of —871 HU. Emphysema patterns have the lowest mean
p (] ] — value of —951 HU. Distribution of the ground glass voxels is
g oms 1 close to those of fibrosis, which highlights the need for texture
& features that characterize the spatial organization of the voxels
0l 1 to separate the two patterns. According to the notable variation
among the gray-level distributions, features such as histogram
075, 1 bins, mean, variance, skewness, and kurtosis of the distribu-
‘ , , , , |_| tion along with air components may have strong discriminative
healthy emphysema  ground glass fibrosis micronodules  multiclass

p=2.82x107 p=0.029 p=0.077 p=2.26 x10"'? p=5.12x10* p=1.49x10°'®

Fig.5. Contribution of the QWF features with v = 2 when compared to GLH
with air percentage only. The statistical significance of each comparison is
assessed using a paired t-test (two-tailed). The comparisons are all statistically
significant (p < 0.05) except for ground glass.

B. DWF Versus QWF

The abilities of DWF and QWF for classifying the lung tissue
patterns are compared. Various orders of the isotropic poly-
harmonic B-spline wavelets (3, are evaluated with v = 2,3, 4.
To compare performance, four levels of DWFs were performed
using B-spline wavelets of degree aw = 1,2, 3. The equivalent
order of derivatives 7y corresponds to a+ 1 [see (4)]. Pair-
wise comparisons of classification accuracies using DWF ver-
sus QWF for several degrees and orders (« + 1, ) are shown in
Table VL.

IV. DISCUSSION

The properties of GLH features are discussed in Section V-
A, and their complementarity with QWF features is analyzed in
Section IV-B. The comparison of QWF and DWF is dissected in
Section I'V-C. The blockwise categorization of the lung tissue is
discussed in Section IV-D considering its usage as a CAD sys-
tem. Global remarks on visual features used to characterize lung
tissue patterns in HRCT imaging are provided in Section IV-E.

potential for the classification of the patterns. An accurate de-
scription of the gray levels can be obtained by reducing the
number of bins to 22 corresponding to pixel values in [—1050,
600] because the bins outside this interval are very sparsely
populated. [—1050, 600] corresponds to an extended interval
of the lung HU values that includes pathological tissue of high
density (e.g., calcified nodules [57]). Because the majority of
the information is contained in low HU values, a nonlinear bin-
ning with bins of exponential width was tested but did not lead
to better results. A reason for this is that the information al-
lowing to differentiate among the patterns is mostly contained
in HU values of [—700, —200] (see Fig. 4). It is important to
note that although the shapes of the gray—level distributions are
distinctive in Fig. 4, they are averaged over a large number of
cases and thus correspond to the center of mass of each class
in the GLH feature space. Large intraclass variations are ob-
served as depicted in Fig. 6, which makes the classification task
difficult. Additional features along with machine learning algo-
rithms able to draw intricate decision boundaries are required
for an accurate recognition of the lung tissue patterns. This is
especially true with healthy tissue [58]. The blockwise analysis
also tends to increase the intraclass variability.

B. OQWF and GLH

The complementarity of QWF and GLH features is investi-
gated in Fig. 5. The combination of QWF and GLH features
shows statistically significant improvement in classification
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Fig. 6. (a)and (b) Intraclass variations for the class healthy. Histograms of the
two blocks show two outliers that mark the boundaries of the class. The block
in (b) contains several bronchovascular structures increasing the global density.

accuracy for all patterns (p < 0.029) except ground glass
(p =0.077) and is particularly effective when carrying out
multiclass classification (p = 1.49 x 10~'®). The GLH and per-
centage of air describe the composition of the tissue through its
densities whereas QWF complementarily characterizes its struc-
ture. For instance, fibrosis is characterized by sharp transitions
between high density tissue and small air bubbles yielding a
specific spectrum signature that is successfully learned by QWF
features.

C. DWF Versus QWF

Pairwise comparisons shown in Table VI indicate that QWF
outperforms DWF in 61% of the comparisons (11 among 18)
for all degrees/orders. High statistical significance of the dif-
ferences of accuracy in the multiclass configuration is observed
(p = 1.26 x 107®). Isotropic polyharmonic B-spline wavelets
(QWF) with order v = 2 allowed an arithmetic mean accu-
racy of 76.9% of correct predictions among the five lung tissue
classes with balanced precision over the classes (see Table V).
This global increase in performance is primarily due to the
better isotropy properties of the nonseparable WT, thanks to
their close connection to the isotropic Laplacian operator. On
the contrary, the favored directions of the separable transform
lead to noisy features creating nonhomogeneous clusters of in-
stances belonging to the same class in the feature space, which
decreases global classification performance due to a lack of reg-
ularization. Although having an influence on global accuracy,
the finer scale progression allowed by the quincunx subsam-
pling increases the precision of the classification, e.g., by reduc-
ing confusions between patterns with well-defined object size
such as micronodules and bronchovascular structures. The high-
est improvements using QWF are achieved for classes healthy
(p = 0.008), ground glass (p = 1.94 x 10’5), and micronod-
ules (p = 0.008). The reduced number of subbands with QWF
(one per scale for QWF and three for DWF) is also an impor-
tant clue to avoid the curse of dimensionality. QWF features
allow to characterize two times more scales with even a reduced
number of features when compared to DWF. In this study, the
DWEF requires 36 features (4 x 3 x 3) for characterizing four
scales when the QWF uses no more than 24 features (8 x 3)
to characterize eight scales. This highlights that albeit separable
transforms being faster, because the convolutions are carried out
in one dimension, they yield several subbands per scale, which
is less adapted for multidimensional signal analysis where the
amount of information increases exponentially. Degree/order

a =1 and v = 2 allow for best classification for all patterns
except for fibrosis although being very close (p = 0.446) to the
best accuracy as well. A first reason for this is that the scale
progression is well initialized and fits best the characteristic
structures of each pattern leading to increased classification ac-
curacy. These degrees/orders are best tradeoffs between spatial
and spectral localization. Second, this suggests that 3, begins to
have acceptable isotropic properties already starting from v = 2
and lower values favor the x- and y-directions.

D. Blockwise Classification With QWF

Experience with the segmentation of 85 lung volumes shows
that the 3-D region growing with closing allows an almost fully
automatic segmentation. The trachea is included as lung tissue
in many cases but automatic solutions exist to remove it. Manual
corrections are required when the closing operation cannot fill
large regions of consolidated tissue.

The automatic segmentation of the lung tissue is crucial for
the success of the CAD. The accuracies obtained in Table V
show that the SVM classifier can learn effectively from the
hybrid feature space. The recurrent confusion between healthy
and micronodule patterns in Table IV suggests that the decision
boundaries are not trivial in some cases. These confusions have
an impact on the performance measures of healthy patterns in
Table V. The small nodules in micronodules are mixed with
bronchovascular structures contained in healthy tissue. This is
a major limitation of the 2-D QWF used in this study. The use
of 3-D isotropic polyharmonic B-spline wavelets [26] in near
isotropic multidetector CT (MDCT) image series may be able
to overcome the confusions between healthy and micronodules
as the bronchovascular structures are cylindric, whereas small
nodules are roughly round [59]. Unfortunately, the HRCT pro-
tocol used at the HUG does not allow for a true 3-D analysis
as the spacing between the slices is 10 mm, yielding extremely
anisotropic volumetric images but limiting the radiation dose
delivered to the patients when compared to the MDCT proto-
col. Using the clinical context of the images such as the age
of the patient shows allows clarifications between visually sim-
ilar patterns [20]. Micronodules in a 20-year old subject are
very visually similar to healthy tissue surrounded by vessels of
an 80-year old person. The clinical context allows significant
improvements particularly for the characterization of micron-
odules [20].

Table IV shows recurrent confusion between ground glass
and fibrosis. This may be partially explained by the fact that
fibrosis patterns are most often accompanied by small regions
of ground glass because of the redistribution of the perfusion
to the functional tissue remaining. This has the effect to over-
load the healthy tissue, which thus has the visual appearance of
ground glass because of increased attenuation. However, dur-
ing the annotation sessions, the label fibrosis was assigned to
the entire ROI leading to classification errors when the system
correctly detects the small ground glass regions. At the border
of the lungs, misclassifications occur due to the response of the
wavelets to the sharp change of intensity. A solution to this is to
use a symmetry of the lung tissue using the tangent to the lung
border as axis. To remove noise in the blockwise classification,
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a 3-D voting of the classifier may avoid small inconsistent
isolated regions. The anatomical regions of the lung do not
have the same prior probabilities of having abnormal tissue. For
instance, fibrosis is prevailing at the periphery of the lung bases.
Integrating the anatomical regions for improving the classifi-
cation performance requires to automatically segment the lung
regions and showed significant improvement of classification
accuracy in [10] and [60].

E. Global Remarks on the Visual Features

Wavelets and filter banks are not the most popular feature
extraction techniques for the characterization of parenchymal
textures in the literature [5]. Although a direct comparison of
the performance reported does not make sense as the types of
tissue included, the validation methods and the dataset used vary
much among the studies; we believe that wavelet-based texture
features are more adapted to analyze texture patterns in medi-
cal images than many other methods. Filtering techniques and
wavelets offer an overcomplete feature set able to fit most of
the textures to efficiently derive features from the coefficients.
Wavelet-based texture features are covering the entire spectrum,
which truly allows detecting the spectral signatures of the pat-
terns, being complementary to the measures of density using
GLH. Among the experiments in this study, the combination
of QWF with GLH showed to best discriminate lung tissue
patterns, which is consistent with our hypothesis on the require-
ment of affine invariance of the texture characterization. No
comparison with directional analysis is carried out. Preliminary
tests using the methods described in [49] did not lead to better
results suggesting that isotropic analysis is adapted to lung tis-
sue analysis that may not contain prevailing orientation. This is
contradictory to results obtained in [16] and [24], and further
investigations are required to learn about the orientations in the
lung tissue patterns.

As highlighted in the literature, we observed that in this
dataset, the selected classes of lung tissue and the validation
methods have all a strong influence on the measured perfor-
mance of the CAD. The performance shown in Tables IV and V
has to be considered as the baseline performance in accordance
with actual clinical situations as the LOPO cross validation
simulates true clinical routine usage of the CAD. The block-
wise classification allows us to detect abnormalities in HRCT
images series and provides a 3-D map of the lung tissue (see
Fig. 7) that indicates the suspicious regions to unexperienced
radiologists [54].

V. CONCLUSION AND PERSPECTIVES

We have developed a near-affine-invariant texture feature set
extracted using a tailored WT, i.e., isotropic polyharmonic B-
spline wavelets deployed as a redundant frame transform with
quincunx subsampling. The quantification of the wavelet co-
efficients using parameters of a mixture of Gaussians com-
bined with GLH bins in HUs efficiently characterizes five
lung tissue patterns in HRCT imaging with statistically signifi-
cant improvements when compared to density-based features
(p =149 x 107'®) and standard DWFs (p = 1.26 x 107%).
While limitations occur as no directional analysis is carried out,

(a) (b)

Fig. 7. Screenshots of the 2-D/3-D diagnosis aid tools for the radiologists.
(a) 2D map of the lung tissue. (b) 2D/3D tissue map displayed in a graphical
user interface.

the assumption was that no prevailing directions are contained
in lung tissue patterns projected on 2-D axial slices in HRCT.
The LOPO cross validation used to assess the performance of the
visual features is in accordance with a clinical use of the system.

An N-dimensional extension of the WT is desirable for the
characterization of organs and tissue in volumetric medical im-
ages. The custom WT is easily extendable to three dimensions
with the limitation that the equivalent of quincunx subsampling
will not yield similarity transforms [45]. It is important to note
that 3-D WTs are not appropriate for analyzing HRCT image
series because filtering along the z-axis with a very low axial
resolution (20 to 50 slices with 10-mm distance) leads to coarse
blurring of the relevant information.

We believe that the proposed methods provide accurate de-
scriptions of textures that do not contain prevailing orientations.
The characterization of biomedical tissue is often related to tex-
ture [61], [62], opening a wide variety of applications for the
texture analysis framework proposed. Modifications concerning
the GLH (based on HU) and tuning of the parameters of QWF
(i.e., the order v and number of iterations) are required.
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